Personally, I agree that you have to look at the failure mode to determine what strengths have to be considered. What follows is an excerpt from a speech I give to saw filers. It is aimed at middle aged and older people who have a high school diploma with maybe one or two science classes. It is not designed for the audience here but it will give an idea of how I analyze what strengths are needed when I design a tool for a specific application.
How carbide saw tips wear out and become dull.
1. Wear – the grains and the binder just plain wear down
2. Macrofracture – big chunks break off or the whole part breaks
3. Microfracture – edge chipping
4. Crack Initiation – How hard it is to start a crack
5. Crack propagation - how fast and how far the crack runs once started
6. Individual grains breaking
7. Individual grains pulling out
8. Chemical leaching that will dissolve the binder and let the grains fall out
9. Rubbing can also generate an electrical potential that will accelerate grain loss 10. Part deformation - If there is too much binder the part can deform
11. Friction Welding between the carbide and the material being cut
12. Physical Adhesion – the grains get physically pulled out. Think of sharp edges of the grains getting pulled by wood fibers.
13. Chemical adhesion – think of the grains as getting glued to the material being cut such as MDF, fibreboard, etc
14. Metal fatigue – The metal binder gets bent and fatigues like bending a piece of steel or other metal
15. Heat – adds to the whole thing especially as a saw goes in and out of a cut. The outside gets hotter faster than the inside. As the outside grows rapidly with the heat the inside doesn’t grow as fast and this creates stress that tends to cause flaking (spalling) on the outside.
16. Compression / Tension Cycling - in interrupted cuts the carbide rapidly goes though this cycle. There is good evidence that most damage is done as the carbide tip leaves the cut and pressure is released.
17. Tribology – as the tip moves though the material it is an acid environment and the heat and friction of the cutting create a combination of forces.
Thomas J. Walz
Carbide Processors, Inc.
Good engineering starts with a Grainger Catalog.