Continue to Site

Eng-Tips is the largest engineering community on the Internet

Intelligent Work Forums for Engineering Professionals

  • Congratulations Ron247 on being selected by the Eng-Tips community for having the most helpful posts in the forums last week. Way to Go!

Balance Beam formula

Status
Not open for further replies.

walp25

Industrial
Dec 9, 2010
2
Hi folks,
Sorry to have to ask a seemingly simple question. Ive been out of practice for some time, and the "googling" route is not providing me any clarity.

I need to calculate how much weight to put on one side of an asymmetric beam. This is somewhat easy to figure if the loading was balanced, and i had the weight of all materials including the beam.

However Im working with evenly distributed loads on either side of the fulcrum.
my example is thus:
Beam is 20ft long
Fulcrum is at 8ft from left end
I need to figure how much weight (distributed) say over 2ft from extreme left to apply to the beam to create equilibrium across the fulcrum.

I know there is an easy solution to this, but I just cannot put my finger on it.

Can someone advise me on a formula or location of one?

Thanks,
Sam
 
Replies continue below

Recommended for you

summation of moment @ fulcrum = 0
W= weight of beam
W1= weight of distributed load 2ft from left

W(12)(12/2) = W(8)(8/2) + W1(2)(7)
 
i'm guessing it's slightly more complicated than that ...

LL = span on the left of the fulcrum = 12'
LR = span on the right, 8'
W = weight (per ft) of the beam
WL = weight added on the left side
XL = distance from the fulcrum (of WL)
WR = weight added to the right
XR = where this is
if you're applying a distributed load, apply a concentrated load in the middle of the distributed span (clear as mud)

LHS moments = W*LL*LL/2+WL*XL
RHS moments = W*LR*LR/2+WR*XR
 
delagina & rb1957,
Thanks for your responses.....It didnt even occur to me I could turn the dist. load into a point load. This will help me figure this out. I know that the moment needs to "null" out at the fulcrum to be in equilibrium, I was just having a bear of a time dealing with the loading on the beam (being distributed).
Thanks again for your responses, this made my afternoon.
-Sam
 
What exactly is this for?

 
So, now that you know how to do it, what is the answer? What is the uniform load required to balance the beam? No hinting from the audience.

BA
 
be careful of changing distributed loads to point loads when the distributed load goes past the hinge point or support, treat the load on each side of this as a separate point load.
 
delagina and rb1957 showed a nice way of solving the problem. Another way would be to say that the first 8' of the 12' portion is already balanced, so the unbalanced moment is 4*w*(8+4/2) or 40w where w is the uniform load of the beam.

If the additional load on the end of the 8' span is w1, then 2*w1*(8-2/2) or 14w1 is its moment about the fulcrum.

The beam is balanced when those two expressions are equal.

BA
 
Status
Not open for further replies.

Part and Inventory Search

Sponsor