My question had nothing whatsoever to do with the difference between measured and calculated stresses. My question had to do with the general principle of assuming calculated stresses are more accurate at the integration points than they are at the nodal points. My assumption was that was a limitation of some FEA codes that use isoparametric elements, and in way, I was correct, as some FE codes allow (or recommend) stress computations only at the Gauss points. In another way, I was way off base, in that this statement has a sound foundation. In asking for references, I was looking for something more of a theoretical basis rather than just experience based reasons.
It turns out there is a strong theoretical basis for this claim, which appears to have been proved for a few element types, but not all. Starting with Barlow, "Optimal Stress Locations in Finite Element Models," Int. J. for Num. Meth. in Engrg, Vol 10, 1976 pp. 243-251; Barlow demonstrated with a few examples that show that evaluation of stresses is 'optimal' at the Gauss integration points:
1) for beam with cubic shape functions if the exact solution is a polynomial of order quartic 2) for 8 node isoparametric plane elements (what many of you call QUAD8, right?) if the exact solution is a cubic, and 3) for 20 node isoparametric solid elements if the exact solution is a cubic. Barlow did not specifically use the term "superconvergence." However, this paper is a very nice introduction to the way an engineer might try to show 'optimality' of a particular computation.
While those Barlow examples might seem to be too specific, in that we cannot assume a priori that the 'exact solutions' are polynomials, there are at least 3 theoretical treatments that demonstrate the validity of the "stresses are more accurate..." statement: Strang and Fix, An Analysis of the Finite Element Method, Zienkiewicz, The Finite Element Method (I have access to the late 80s edition) and Wahlbin, Superconvergence in Galerkin Finite Element Methods. The last one is interesting, but readable only if you have some idea what a L2 space is! Wahlbin uses a common technique--first guess that the convergence rates for a certain calculation are of a certain form, say the 'norm' raised to a power 'q', then prove that the power 'q' is less than 1, and therefore the computation is 'superconvergent'. (Proving that 'q' is some value is IMO the most significant contribution the mathematicians have made to the theoretical development of the finite element method.) In a review by DN Arnold, a couple of results are relevant to this discussion were made clear: in one dimensional problems, and continuous piecewise quadratic elements, the finite element solution (that is, the displacements) are superconvergent at the mesh points and element midpoints, while the derivatives (which you use to compute stresses) are superconvergent at the 2 Gauss integration points. The derivation of the superconvergent results for 2D and 3D is more problematic, and restricted to meshes with high degree of symmetry. Nevertheless, this is an excellent theoretical treatment of the subject.
The reason I think I 'missed' this result, that 'stresses are more accurate at the integration points,' is that my background is in p-version, which uses higher order shape functions, and generally does NOT use the isoparametric elements. It seems that this result "stresses are more accurate..." is confined mainly (but not exclusively) to isoparametric elements of the type most FE analysts use (which doesn't make the isoparametric elements inferior of course, it's just a property specific to those element types). I still think it is incorrect to state, though, that 'stresses are superconvergent at the Gauss points' in general for all element types; still it might be true, perhaps it just hasn't been proved for all element types as far as I can tell.