Hi,
I also add my two-cents... for what they are worth of...
In FEA packages (and by consequence in FEA literature) there are A LOT of different formulations for the same "kind" of element. Some hypothesize a stress field, other hypothesize a displacement field, some have auxiliary nodes at the edges' midsides, other have auxiliary nodes "inside" the element, and so on and so on.
However, for every 3D element I am aware of, there is always an hypothesis made on the (internal)force/displacement fields. The undirect demonstration of this is, for example, when you launch the solution with ANSYS: the first solver message before starting the equilibrium iterations is the output of a "force norm", determined on the basis of the [F] matrix AND the force-field coming from the elements' formulation. If stress/force didn't come into play in the computation of the equiibrium, there would be no way to decide the solution has come to convergence (i.e. there are simultaneously an equilibrated force field and a compatible displacement field).
Even if you use a direct solver, the internal matrix depends upon the element formulation, for the exact same reason: you MUST give an equilibrated force field as a response of a compatible displacement field, and vice-versa.
So, IMHO, to return to the original question: the Gaussian results as regards stresses are <generally> considered "the most accurate" from a numerical point of view simply because the element formulations are <generally> based upon these points and not upon the corner nodes. OK, there is also to say that the positions of the Gaussian nodes DO ARE calculated AS A FUNCTION OF the nodes' positions, so there is IMHO no point in saying that they are "more realistic" or not.
Just to make another example, in the case of the components/assemblies I usually analyze, the UNAVERAGED nodal results, by someone considered as a "must-be", are complete rubbish. I know of other situations where, instead, averaging like I do may lead to dangerous under-estimations.
Literature makes a good work in telling which kind of results, and in which applications, should be sought from the integration points, which instead from the nodes, which from the overall element, and so on.
AFAIK, there is no univoque answer to the original question.
"Gaussian better than Nodes? It depends..."
Regards