Prost,
How is the stiffness matrix derived for a given element?
To derive the algebraic equations for a given element's stiffness matrix, one must first solve implicitly for the stress and strain fields internal to the element. This is done by making certain assumptions about the boundary conditions (small displacements, linear constitutive model, constant tractions at the boundary faces, etc.) and then applying complex transforms to solve the stress/strain fields directly via numerical integration.
Thus, after actual load and displacement vectors are solved for, the strain and stress can be backed out from the stiffness matrix formulation as algebraic sums. The stress and strain were already solved for, by the person who computed the equations for the stiffness matrix. All FEA models report element stress tensors based upon the element stiffness model, and these stresses are calculated at, and are most "accurate" at, the integration points used to derive the element stiffness model. If you try and apply your own "stress calculation" to derive the stress field from the solved displacements, you will have a result that is less accurate than using the already solved equations to find the stresses at the integration points that were used to derive the element stiffness.
So, fine, Mr. Prost, you are technically correct in the statement "stresses are calculated AFTER you compute the displacement vector "u",". Yes, generally, the stresses are computed after first inverting and solving the Kx=f matrices.
But, the rest of your statement "...by computing, as you know, the spatial derivatives." is not correct, at least not for linear solutions; the stresses in a linear FEA again, are found from implicit equations, not by recomputing the difference equations that you've already solved by integration. So, I and others, are also correct. And the reference I gave is a textbook, one of the original ones for FEA, that describes the above in excruciating detail. I should know, as I used it for many years to write and solve my own FEA codes.