g7mann [geotechnical]
Dear geotechgal - since I was the primaryu author of the ARC Guidelines perhaps I can help. I often engineer rock walls for seafront bulkheads wher the hydraulic pressure can be truly huge. Fortunately this is not often an issue.
The rock wall cannot be accurately "designed", at least not like a reinforced concrete wall. Ordinarily I use a wedge analysis to determine the requisite mass of rock in-place to resist lateral sliding and overturning. Sliding is virtually always the big issue. Once you determine the "correct" amount of rock to resist movement you will need to bury the toe, typically two to three feet, so that you can generate a small amount of passive restraint along the toe. [Neglect the upper one foot in your analysis.]
Once you have detemined the appropriate size of the structure, and we are presuming that you are building against a reasonably competent "native" cut soil face, you will need to provide a drainage layer between the rockery rocks and the cut face. Seafront walls typically have between about two and three feet of "drain rock" installed. Obviously, the thickness of this drain rock layer will also vary with the shapes and sizes of the wall rocks. Use a two to four inch sized crushed quarry rock for this purpose. If you are in a situation where the water level will fluctuate regularly you may omit any basal drain pipe. If not, install a six inch diameter, perforated, smooth-walled plastic drain pipe along the back edge of the keyway excavation, where it should be at the lowest point behind the wall. This drain pipe must be extended to a controlled discharge beyond the ends of the wall, and preferably into a permanent drain system. You must also remember that the larger vopid spaces between the rocks, typically those of about six inches and above, must be chinked from behind to help prevent seepage [or drainage flow] from dislodging and removing either soil fines or drain rock. Do NOT chink the wall from the front.
Where the protected [and retained] soil is granular and susceptible to erosion or dislodgement when subject to seepage or dranage flow, you should also consider using a layer of geotextile. The geotextile should be hung over the full height of the cut face and spread over the base of the keyway. Set the basal row of rocks on the front edge of the geotextile to "fix" it in-place. Then carefully construct the rock wall making sure that the drain rock backfill is firmly tamped-in-place so that it "forces" the geotexctile firmly against the soil face. This should help reduce the rick of long term clogging of the fabric.
There are a few other issues to be aware of, such as preventing the wall contractor from stacking the rocks one atop the other like a stack of shoe boxes. If this occurs, regardless of the results of your "engineering" the wall will fail, particularly if it's more than about eight feet tall.
It's also important that the second row of rocks, and opf cource the succeeding rows, be offset on the row below so that each rock is, wherever possible, supported by two underlying rocks. Avoid point contact wherever possible -it tends to devlop high stresses that can, though not often, lead to rock crushing.
When building the wall make sure the contractor is setting the rocks so that the face is inclined back at about 1H:6V and that the individual rocks are flush with each other horizontally.
Most rockey contractors will price a wall on a square footage of wall face basis. To make money they will then maximize the indiviedual rock exposure - placing the largest dimension outwards. Do NOT under any circumstance let the contractor place any rocks with the largest dimension parrallel to the face of the wall. The largest dimension should always be set back into the wall - after all, the engineering determines the thickness of the wall required to resist sliding and overturning. If you do not have sufficient mass-in-place, the wall will probably fail.
Perhaps most important of all is to make sure that the contractor is capable of building the wall the way you engineer it. He must have [at least access to] appropriately sized equipment to lift the larger rocks. Has he built any similar walls in the past and, if so, where are they. Go and look! You'd be surprised at the stories you'll be told - verify the contractors' capabilities always.
There, now you can go pout and build your wall safely. good luck.