Hi everybody,
I am trying to do something simple using Nastran SOL106.
I have a two element mesh (CHEXA elements) and I put a simple point load on a node with a given direction (three subclasses for three directions) and I want to compute the nonlinear displacement in case of large displacements.
(Just note that the two element mesh is in fact just one element because the properties concerning the second elements are chosen to be degenerated.)
When I do that, I never can activate the nonlinearity. If I multiply the load by a factor 10000, I go on with linear calculations, that is to say a SOL101.
What I would like is to carry out this nonlinear calculation.
This is my .bdf. What do I miss for activating the large displacements ?
I thank you in advance,
Best regards,
INIT DBALL LOGICAL=(DB(100000))
INIT MASTER LOGI=(MS)
$
SOL 106'
TIME 600
DIAG 8
CEND
$
TITLE=FNL
SUBCASE 1
NLPARM=1
SPC=2
LOAD=3
$SPCFORCES(SORT1,REAL)=ALL
DISP=ALL
SUBCASE 2
NLPARM=1
SPC=2
LOAD=4
$SPCFORCES(SORT1,REAL)=ALL
DISP=ALL
SUBCASE 3
NLPARM=1
SPC=2
LOAD=5
$SPCFORCES(SORT1,REAL)=ALL
DISP=ALL
$
BEGIN BULK
$ activation du non lineaire geometrique
PARAM,NLGEOM,1
$ activation grands deplacements
PARAM,LGDISP,1
PARAM,AUTOSPC,YES
$ matrice de masse complete (non concentree)
PARAM,COUPMASS,1
$ format exportation
PARAM,POST,0
PARAM,PRGPST,YES
$ inclus la force suiveuse dans le calcul de la matrice tangente
PARAM,FOLLOWK,YES
$ integration full with 3*3*3=27 gauss points
PSOLID,1,1,,3,,FULL
PSOLID,2,2,,3,,FULL
$ elements HEXA with 8 nodes (linear interpolation)
CHEXA 1 1 1 3 4 2 7 9
10 8
CHEXA 2 2 3 5 6 4 9 11
12 10
$ material with card 1
MAT1 1 1.89e+11 2.50e-017.86e+03
$ material with card 2 (null material properties artificial)
$ artificiellement le deuxieme element masse nulle
MAT1 2 1.89e-01 2.50e-017.86e-9
$ node list
GRID* 1 3.50000000e-02 0.00000000e+00
* 0.00000000e+00
GRID* 2 3.47005701e-02 4.56841673e-03
* 0.00000000e+00
GRID* 3 5.12500000e-02 0.00000000e+00
* 0.00000000e+00
GRID* 4 5.08115491e-02 6.68946735e-03
* 0.00000000e+00
GRID* 5 6.75000000e-02 0.00000000e+00
* 0.00000000e+00
GRID* 6 6.69225281e-02 8.81051797e-03
* 0.00000000e+00
GRID* 7 3.50000000e-02 0.00000000e+00
* 5.00000000e-02
GRID* 8 3.47005701e-02 4.56841673e-03
* 5.00000000e-02
GRID* 9 5.12500000e-02 0.00000000e+00
* 5.00000000e-02
GRID* 10 5.08115491e-02 6.68946735e-03
* 5.00000000e-02
GRID* 11 6.75000000e-02 0.00000000e+00
* 5.00000000e-02
GRID* 12 6.69225281e-02 8.81051797e-03
* 5.00000000e-02
$ Dirichlet condition for node 1
$ SPC1,2,123456,1
$ Dirichlet condition for nodes 1,2,3,4
SPC1,2,123456,1
SPC1,2,123456,2
SPC1,2,123456,3
SPC1,2,123456,4
$ static concentrated force intensity 1e6, node 8, dof 1
FORCE,3,10,,1e6,1.,0.,0.
$ static concentrated force intensity 1e6, node 8, dof 2
FORCE,4,10,,1e6,0.,1.,0.
$ static concentrated force intensity 1e6, node 8, dof 3
FORCE,5,10,,1e6,0.,0.,1.
$ nonlinear calcul
NLPARM,1,2 $,,AUTO,UPW,NO$1,25,UP,YES
$NLPARM 1 10 AUTO UPW NO
ENDDATA
I am trying to do something simple using Nastran SOL106.
I have a two element mesh (CHEXA elements) and I put a simple point load on a node with a given direction (three subclasses for three directions) and I want to compute the nonlinear displacement in case of large displacements.
(Just note that the two element mesh is in fact just one element because the properties concerning the second elements are chosen to be degenerated.)
When I do that, I never can activate the nonlinearity. If I multiply the load by a factor 10000, I go on with linear calculations, that is to say a SOL101.
What I would like is to carry out this nonlinear calculation.
This is my .bdf. What do I miss for activating the large displacements ?
I thank you in advance,
Best regards,
INIT DBALL LOGICAL=(DB(100000))
INIT MASTER LOGI=(MS)
$
SOL 106'
TIME 600
DIAG 8
CEND
$
TITLE=FNL
SUBCASE 1
NLPARM=1
SPC=2
LOAD=3
$SPCFORCES(SORT1,REAL)=ALL
DISP=ALL
SUBCASE 2
NLPARM=1
SPC=2
LOAD=4
$SPCFORCES(SORT1,REAL)=ALL
DISP=ALL
SUBCASE 3
NLPARM=1
SPC=2
LOAD=5
$SPCFORCES(SORT1,REAL)=ALL
DISP=ALL
$
BEGIN BULK
$ activation du non lineaire geometrique
PARAM,NLGEOM,1
$ activation grands deplacements
PARAM,LGDISP,1
PARAM,AUTOSPC,YES
$ matrice de masse complete (non concentree)
PARAM,COUPMASS,1
$ format exportation
PARAM,POST,0
PARAM,PRGPST,YES
$ inclus la force suiveuse dans le calcul de la matrice tangente
PARAM,FOLLOWK,YES
$ integration full with 3*3*3=27 gauss points
PSOLID,1,1,,3,,FULL
PSOLID,2,2,,3,,FULL
$ elements HEXA with 8 nodes (linear interpolation)
CHEXA 1 1 1 3 4 2 7 9
10 8
CHEXA 2 2 3 5 6 4 9 11
12 10
$ material with card 1
MAT1 1 1.89e+11 2.50e-017.86e+03
$ material with card 2 (null material properties artificial)
$ artificiellement le deuxieme element masse nulle
MAT1 2 1.89e-01 2.50e-017.86e-9
$ node list
GRID* 1 3.50000000e-02 0.00000000e+00
* 0.00000000e+00
GRID* 2 3.47005701e-02 4.56841673e-03
* 0.00000000e+00
GRID* 3 5.12500000e-02 0.00000000e+00
* 0.00000000e+00
GRID* 4 5.08115491e-02 6.68946735e-03
* 0.00000000e+00
GRID* 5 6.75000000e-02 0.00000000e+00
* 0.00000000e+00
GRID* 6 6.69225281e-02 8.81051797e-03
* 0.00000000e+00
GRID* 7 3.50000000e-02 0.00000000e+00
* 5.00000000e-02
GRID* 8 3.47005701e-02 4.56841673e-03
* 5.00000000e-02
GRID* 9 5.12500000e-02 0.00000000e+00
* 5.00000000e-02
GRID* 10 5.08115491e-02 6.68946735e-03
* 5.00000000e-02
GRID* 11 6.75000000e-02 0.00000000e+00
* 5.00000000e-02
GRID* 12 6.69225281e-02 8.81051797e-03
* 5.00000000e-02
$ Dirichlet condition for node 1
$ SPC1,2,123456,1
$ Dirichlet condition for nodes 1,2,3,4
SPC1,2,123456,1
SPC1,2,123456,2
SPC1,2,123456,3
SPC1,2,123456,4
$ static concentrated force intensity 1e6, node 8, dof 1
FORCE,3,10,,1e6,1.,0.,0.
$ static concentrated force intensity 1e6, node 8, dof 2
FORCE,4,10,,1e6,0.,1.,0.
$ static concentrated force intensity 1e6, node 8, dof 3
FORCE,5,10,,1e6,0.,0.,1.
$ nonlinear calcul
NLPARM,1,2 $,,AUTO,UPW,NO$1,25,UP,YES
$NLPARM 1 10 AUTO UPW NO
ENDDATA