llocou
Structural
- Mar 19, 2014
- 6
Hello all,
I'm trying to find the capacity of a beam to ACI 318. Bear with me, I'm a BS/Eurocodes guide. Details of beam:
1000mm x 1000mm
50mm cover, 12 mm links, 25mm bars. 7 bars, top and bottom.
So As = As' = 3436mm^2. Here's as far as I've got with ACI method:
d' = 50+12+25/2 = 74.5mm
d= 1000-74.5 = 925.5mm
fc' = 30N/mm^2
fy = fs' (?) = 415N/mm^2
Cc = 0.85*fc'*b*a = 0.85*30*1000*a = 25500a
Cs = (fs'-0.85fc')*As' = (415 - 0.85*30)*3436 = 1338322
T = As*fy = 3436 * 415 = 1425940
Cs + Cc = T
25500a + 1338322 = 1425940
a = 3.44 mm <- here's where alarm bells first go off for me! The concrete compression zone is above the compression reinforcing steel... Carrying on anyway:
x = a/Beta = 3.44/0.85 = 4.04mm <- N.A again above reinforcing steel!?
Epsilon s' = ((x-d')*0.003)/x = ((4.04-74.5)*0.03)/4.04 = -0.052 <-negative strain!
Anyway, you can imagine how it carries on from here. Any advice? Appreciate any help, many thanks in advance!
I'm trying to find the capacity of a beam to ACI 318. Bear with me, I'm a BS/Eurocodes guide. Details of beam:
1000mm x 1000mm
50mm cover, 12 mm links, 25mm bars. 7 bars, top and bottom.
So As = As' = 3436mm^2. Here's as far as I've got with ACI method:
d' = 50+12+25/2 = 74.5mm
d= 1000-74.5 = 925.5mm
fc' = 30N/mm^2
fy = fs' (?) = 415N/mm^2
Cc = 0.85*fc'*b*a = 0.85*30*1000*a = 25500a
Cs = (fs'-0.85fc')*As' = (415 - 0.85*30)*3436 = 1338322
T = As*fy = 3436 * 415 = 1425940
Cs + Cc = T
25500a + 1338322 = 1425940
a = 3.44 mm <- here's where alarm bells first go off for me! The concrete compression zone is above the compression reinforcing steel... Carrying on anyway:
x = a/Beta = 3.44/0.85 = 4.04mm <- N.A again above reinforcing steel!?
Epsilon s' = ((x-d')*0.003)/x = ((4.04-74.5)*0.03)/4.04 = -0.052 <-negative strain!
Anyway, you can imagine how it carries on from here. Any advice? Appreciate any help, many thanks in advance!