MaticGrom
Chemical
- Nov 12, 2014
- 4
Hi everyone!
I have problem in estimating mean particle diameter in fluidized bed material.
I have results of particle size analysis (please find it attached). According to Kunii and Levenspiel (Fluidization Engineering) or Perry's Chemical Engineers' Handbook, mean particle size to be used in fluidized bed equations is calculated by equation (1) in attached document.
Problem is, that if I take entire particle size distribution for calculation of mean particle size by equation (1), I obtain mean particle size of 16 micrometers. This would suggest, that material is in Geldard C group of particles. Group C materials are difficult to fluidize (they form "rathols" and pistons). My exerience shows however, that material behaves nice when fluidized, more like group B (I did not notice bubbles expansion range, it also defluidizes quickly).
If I exclude particles under 20 micrometers (representing about 9% of entire mass), a obtain mean particle diameter of 71 micrometers which is close to diameter calculated by more intutive equation (2) (68 micrometers).
My question is, what to do regarding this dilema? Is it justified to exclude particles below 20 micrometers? Does anyone have any similar experience?
Thank you very much for any answers and clues.
Best regards,
Matic
I have problem in estimating mean particle diameter in fluidized bed material.
I have results of particle size analysis (please find it attached). According to Kunii and Levenspiel (Fluidization Engineering) or Perry's Chemical Engineers' Handbook, mean particle size to be used in fluidized bed equations is calculated by equation (1) in attached document.
Problem is, that if I take entire particle size distribution for calculation of mean particle size by equation (1), I obtain mean particle size of 16 micrometers. This would suggest, that material is in Geldard C group of particles. Group C materials are difficult to fluidize (they form "rathols" and pistons). My exerience shows however, that material behaves nice when fluidized, more like group B (I did not notice bubbles expansion range, it also defluidizes quickly).
If I exclude particles under 20 micrometers (representing about 9% of entire mass), a obtain mean particle diameter of 71 micrometers which is close to diameter calculated by more intutive equation (2) (68 micrometers).
My question is, what to do regarding this dilema? Is it justified to exclude particles below 20 micrometers? Does anyone have any similar experience?
Thank you very much for any answers and clues.
Best regards,
Matic