I don't know the term critical flow. The Fisher Control Valve Handbook uses "critical flow" once in a paragraph as follows:
“…Although in actual service, pressure drop ratios can, and often will, exceed the indicated critical values, this is the point where critical flow conditions develop. Thus, for a constant P1, decreasing P2 (i.e., increasing P) will not result in an increase in the flow rate through the valve. Values of x, therefore, greater than the product of either FkxT or FkxTP must never be substituted in the expression for Y. This means that Y can never be less than 0.667. This same limit on values of x also applies to the flow equations that are introduced in the next section. …”