Torsional capacity of SHS/RHS Section
Torsional capacity of SHS/RHS Section
(OP)
Can anyone tell me how I can approximate with reasonable accuracy the torsional capacity of a SHS/RHS Section?
INTELLIGENT WORK FORUMS
FOR ENGINEERING PROFESSIONALS Contact USThanks. We have received your request and will respond promptly. Come Join Us!Are you an
Engineering professional? Join Eng-Tips Forums!
*Eng-Tips's functionality depends on members receiving e-mail. By joining you are opting in to receive e-mail. Posting Guidelines |
Torsional capacity of SHS/RHS Section
|
Torsional capacity of SHS/RHS SectionTorsional capacity of SHS/RHS Section(OP)
Can anyone tell me how I can approximate with reasonable accuracy the torsional capacity of a SHS/RHS Section?
Red Flag SubmittedThank you for helping keep Eng-Tips Forums free from inappropriate posts. Reply To This ThreadPosting in the Eng-Tips forums is a member-only feature.Click Here to join Eng-Tips and talk with other members! Already a Member? Login |
ResourcesLearn methods and guidelines for using stereolithography (SLA) 3D printed molds in the injection molding process to lower costs and lead time. Discover how this hybrid manufacturing process enables on-demand mold fabrication to quickly produce small batches of thermoplastic parts. Download Now
Examine how the principles of DfAM upend many of the long-standing rules around manufacturability - allowing engineers and designers to place a part’s function at the center of their design considerations. Download Now
Metal 3D printing has rapidly emerged as a key technology in modern design and manufacturing, so it’s critical educational institutions include it in their curricula to avoid leaving students at a disadvantage as they enter the workforce. Download Now
This ebook covers tips for creating and managing workflows, security best practices and protection of intellectual property, Cloud vs. on-premise software solutions, CAD file management, compliance, and more. Download Now
|
Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.
Here's Why Members Love Eng-Tips Forums:
Register now while it's still free!
Already a member? Close this window and log in.
RE: Torsional capacity of SHS/RHS Section
In Australian practice, the design torsional moment section capacity is calculated thus:
phi*M_z = phi*0.6*f_y*C
where:
- ‘phi’ is the capacity factor, equal to 0.9 [dimensionless]
- ‘M_z’ is the unfactored torsional moment section capacity [kNm]
- ‘f_y’ is the yield stress used in design [MPa]
- ‘C’ is the torsional section modulus [mm3]
For rectangular and square hollow sections:
C = (t^3*h/3 + 2*k*A_h)/(t + k/t)
where:
- ‘t’ is the wall thickness of the section [mm]
- ‘h’ is the length of the mid-contour, h = 2*[(b - t) + (d - t)] – 2*R_c*(4-pi) [mm]
- ‘A_h' is the area enclosed by ‘h’, A_h = (b – t)*(d – t) – R_c^2*(4-pi) [mm^2]
- ‘k’ is the integration constant, k = 2*A_h*t/h [mm^2]
- ‘b’ is the overall width of the section [mm]
- ‘d’ is the overall depth of the section [mm]
- ‘R_c’ is the mean corner radius, R_c = (R_o + R_i)/2 [mm]
- ‘R_o’ is the outer corner radius [mm]
- ‘R_i’ is the inner corner radius [mm]
- pi = 3.142
The design check is:
M_z* < phi*M_z
where:
- 'M_z*' is the design torsional moment (ultimate limit state)
RE: Torsional capacity of SHS/RHS Section
AISC also has desin guide for torsion availble
RE: Torsional capacity of SHS/RHS Section
Check it out at
www.enercalc.com
They have a full function demo you can try before you buy.
It is definitely worth its cost to any practicing structural engineer.