×
INTELLIGENT WORK FORUMS
FOR ENGINEERING PROFESSIONALS

Log In

Come Join Us!

Are you an
Engineering professional?
Join Eng-Tips Forums!
  • Talk With Other Members
  • Be Notified Of Responses
    To Your Posts
  • Keyword Search
  • One-Click Access To Your
    Favorite Forums
  • Automated Signatures
    On Your Posts
  • Best Of All, It's Free!

*Eng-Tips's functionality depends on members receiving e-mail. By joining you are opting in to receive e-mail.

Posting Guidelines

Promoting, selling, recruiting, coursework and thesis posting is forbidden.

Students Click Here

Welding of high strength grade 8.8 steel bolts

Welding of high strength grade 8.8 steel bolts

Welding of high strength grade 8.8 steel bolts

(OP)
Ok now I know that welding of high strength bolts is rarely if ever permitted. Grade 8.8 (830MPa ultimate tensile strength) is the common bolt grade we use. Does anyone know of any good texts/industry guides/academic references that explain in detail what goes on when you weld high strength bolts?

What I always see in general terms is that welding high strength fasteners removes the heat treatment and embrittles the metal.

The following doc talks about how even tack welding of the bolts can embrittle them.

http://www.nationalprecast.com.au/wp-content/uploa...

I'm familiar with the docs in thread725-500924: Is there an official reference restricts welding Gr. 8.8 fasteners ? also.

I'm not trying to find a way to actually weld them, just an authoritative or definitive explanation of what is actually occuring when you weld high tensile fasteners. There may be situations where you are welding near high strength bolts which may experience some localised heat transfer. Are there limits for this, can they take a certain low temperature before strength degradation occurs? Would be interested if anyone has managed to find more detailed info on these issues.
Replies continue below

Recommended for you

RE: Welding of high strength grade 8.8 steel bolts

Hi icebloom

I don’t know of any papers but there may well be some.
My limited understanding is that if you weld or subject an 8.8 bolt to very high heat, then it loses its high strength so an 8.8 bolt has a minimum yield of 640Mpa in its off the shelf state but once it’s been subjected to high heat the minimum 640Mpa no longer applies.

“Do not worry about your problems with mathematics, I assure you mine are far greater.” Albert Einstein

RE: Welding of high strength grade 8.8 steel bolts

+ typically the high carbon and chromium content gives ideal circumstances for the creation of martensite after welding (due to rapid cooling). You're bound to end up with hydrogen cracking.

RE: Welding of high strength grade 8.8 steel bolts


What is the loading of the bolts in your assembly? What service life is required?

What is the welding these bolts will be subjected to ?

Tack welding heads to a substantial main component?
Welding the bolt head to a component to create a stud?
Something else altogether ?

Depending on your industry's required codes, and product, a few empirical tests could help answer a lot of questions.

What would happen if the head spontaneously snaps off the welded bolt in service?
The name plate will be secured by the other 3 bolts?
The bolt head will fall into the gear train of the helicopter gearbox with the Prsident on board at 1000 feet?

RE: Welding of high strength grade 8.8 steel bolts

Think about it this way, if you had solid material of the same alloy/properties would you weld it without PWHT?
I think not.

= = = = = = = = = = = = = = = = = = = =
P.E. Metallurgy, consulting work welcomed

RE: Welding of high strength grade 8.8 steel bolts

My understanding was the main issue was pertaining to the heat treatment (as you and others make note of).

I try to design out the need for welding the nuts, some of the ways are:
- Using a tapped hole in the plate, instead of a nut.
- Using steel stabs to locate the nut and stop it spinning.
- Using a proprietary product (like this Link)

RE: Welding of high strength grade 8.8 steel bolts

(OP)
Thanks for the replies guys.

Kingnero I will have a further look around about the hydrogen cracking you mention, and the formation of martensite.

Tmoose as per my post I am not actually trying to weld the bolts, just understand more the reasoning about what actually happens to the material properties and the reasons behind it. This is an academic pursuit, not an attempt to circumvent code rules that I'm sure are in place for good reasons.

RE: Welding of high strength grade 8.8 steel bolts

In a high hardenability steel like this you will form untempered martensite if you weld.
This material has nil ductility and high propensity to absorb hydrogen.
One common hydrogen source is corrosion.

= = = = = = = = = = = = = = = = = = = =
P.E. Metallurgy, consulting work welcomed

RE: Welding of high strength grade 8.8 steel bolts

It would be great to have a white paper
On the effect of welding high strength bolts. Hydrogen embrittlement is a new one for me from welding .
However never had issues if post bake
Is accomplished to remove hydrogen..

RE: Welding of high strength grade 8.8 steel bolts

I frequently see and personally have welded 8.8 and 10.9 fasteners along with wrenches and sockets. It's a very common practice for tool making or as studs for wire hangers and such. These welds are typically to A36 steel which has very low carbon which may help reduce brittleness.

Would I sell a product made like this, maybe. Would I use it for my own purposes while understanding the limitations and risks? Absolutely.

A while ago I needed to make a Z shaped wrench. Had a bar of 4130 handy. I welded sockets to each end of it with presumably wet 7018, one for a 1/2 square drive and one for a 14mm hex key. The 4130 bar cracked longitudinally along its length. It still worked even with the crack but I was surprised to see the 4130 crack and not the welds to the sockets

RE: Welding of high strength grade 8.8 steel bolts

So I have done some hacks with welding.
I compensated by using thicker material.
To increase the strength. I modified a lot of tools for ease of assembly or almost impossible access. I use to make personal gadgets. For my home mechanic shop.

RE: Welding of high strength grade 8.8 steel bolts

For tool making I use a lot of silicon bronze. For T handle wrenches I use 1144 steel rod and whatever the sockets are made from. Silicon bronze joins the metals without too much care for metallurgy. I made a few are of T handle wrenches for my friends with this combo.

RE: Welding of high strength grade 8.8 steel bolts

I had access to a bunch of remnants
Left over high strength alloy.
Bunch of soc head screws.
In my younger days I would throw a
Old 6 cyl head on the bridge port mill
Reface the surface.

RE: Welding of high strength grade 8.8 steel bolts

We used to make a lot of things out of 4135 since we had a lot of it around.
We always tempered after any welding.
Leaving any untempered martensite is asking for issues later.
It has zero ductility.

= = = = = = = = = = = = = = = = = = = =
P.E. Metallurgy, consulting work welcomed

RE: Welding of high strength grade 8.8 steel bolts

My rule: NEVER perform any type of welding on bolts of any material.

Regards

RE: Welding of high strength grade 8.8 steel bolts

and stainless?

RE: Welding of high strength grade 8.8 steel bolts

A 300 or duplex SS you can leave unannealed if you don't really care about corrosion resistance.
400 series alloys will need to be either annealed or tempered depending on if they are ferritic or martensitic.

= = = = = = = = = = = = = = = = = = = =
P.E. Metallurgy, consulting work welcomed

RE: Welding of high strength grade 8.8 steel bolts

I know, I often spec stainless (A2/A4) if welding of nuts is required (and if there are no problems with compatibility/galv.corr). I just asked because saying "never weld on bolts of any kind" is neither realistic nor correct in my line of activities.

RE: Welding of high strength grade 8.8 steel bolts

A2/A4-70/80 are austinitic stainless steels and are relatively insensitive to heat treatment. OP specifically asked about 8.8 bolts which are medium carbon steel and very sensitive to heat treatment.

RE: Welding of high strength grade 8.8 steel bolts

Some 30x stainless fasteners are strain-hardened in the thread rolling process; welding on them reduces their strength from the spec. value to something less. And as Ed says, you change their corrosion resistance as well.

RE: Welding of high strength grade 8.8 steel bolts

Can someone send us an example of the need for welding on bolt 8.8 ?
Thanks
Regards

RE: Welding of high strength grade 8.8 steel bolts

Here's a common assembly, rails with multiple bolts and locator pins (in hard steel), used on airplanes.
The ISO view is a detail, and doesn't show the entire part.

RE: Welding of high strength grade 8.8 steel bolts

@ kingnero
Thank you !

Regards

RE: Welding of high strength grade 8.8 steel bolts

Quote (r6155)

Can someone send us an example of the need for welding on bolt 8.8 ?
Thanks
Regards

In my experience, it's a site maintenance manager who managed to keep a badly designed (or overtly abused) machine in operation longer by welding together some fasteners. Then they apply that requirement to all machinery.

Also in my experience, it's impossible to predict what will happen when you weld on a bolt. Will it crack? Will the bolt lose preload? Will the bolt gain preload and stretch? Will the base components distort and lose connection quality? Nobody knows because it's unpredictable.

David

RE: Welding of high strength grade 8.8 steel bolts

Welding on these alloys has been widely tested and documented. I wouldn't say it's unpredictable. I would say it's generally a bad idea, as we can predict fairly accurately what's going to happen.

RE: Welding of high strength grade 8.8 steel bolts

I'm not sure, but you might want to take a look at the "Farm Code" for a welding project like this. Do an on line search for the Farm Code 2002.

Best regards - Al

RE: Welding of high strength grade 8.8 steel bolts

Welding to 8.8 fasteners together maybe a bad idea but welding an 8.8 fastener to some A36 plate may give better results as the A36 has such low carbon content it may provide a better microstructure when mixed with the 8.8.

RE: Welding of high strength grade 8.8 steel bolts

But the HAZ or the 8.8 will still have zero ductility.

= = = = = = = = = = = = = = = = = = = =
P.E. Metallurgy, consulting work welcomed

RE: Welding of high strength grade 8.8 steel bolts

"Grade 8.8 bolts are heat treated by quenching and tempering in accordance with the DIN 933 grade 8.8 standard.
This process involves:
- Heating the steel to around 870°C, where it transforms into a γ-austenite crystalline structure
- Rapidly cooling the steel, which transforms the austenite into a martensite crystalline structure
- Reheating the steel to a tempering temperature of 425°C

https://www.researchgate.net/publication/332935675...

The required times at each stage are generally MANY minutes or even hours.

I wonder how hot the various locations within your bolts will get during welding, how long they will stay hot, how rapidly they will cool, and if rapidly cooled ( quenched) how much time they will subsequently spend at 425°C / 800°F .

And like EdStainless said, where in the bolt and the weld joint rapid quenching will very likely create hard brittle steel badly in need of tempering to produce mechanical properties similar to 8.8, or at least not dangerous.

And there may also be issues with residual stresses that, depending on the loads the bolt and welds have to endure, might contribute to early failure.
https://media.springernature.com/lw685/springer-st...

Maybe melt a small spot on the bolt head with a TIG torch and let it cool.
Then Test with a file to see how hard the bolt steel gets when rapidly quenched.

Red Flag This Post

Please let us know here why this post is inappropriate. Reasons such as off-topic, duplicates, flames, illegal, vulgar, or students posting their homework.

Red Flag Submitted

Thank you for helping keep Eng-Tips Forums free from inappropriate posts.
The Eng-Tips staff will check this out and take appropriate action.

Reply To This Thread

Posting in the Eng-Tips forums is a member-only feature.

Click Here to join Eng-Tips and talk with other members! Already a Member? Login



News


Close Box

Join Eng-Tips® Today!

Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.

Here's Why Members Love Eng-Tips Forums:

Register now while it's still free!

Already a member? Close this window and log in.

Join Us             Close