×
INTELLIGENT WORK FORUMS
FOR ENGINEERING PROFESSIONALS

Log In

Come Join Us!

Are you an
Engineering professional?
Join Eng-Tips Forums!
  • Talk With Other Members
  • Be Notified Of Responses
    To Your Posts
  • Keyword Search
  • One-Click Access To Your
    Favorite Forums
  • Automated Signatures
    On Your Posts
  • Best Of All, It's Free!
  • Students Click Here

*Eng-Tips's functionality depends on members receiving e-mail. By joining you are opting in to receive e-mail.

Posting Guidelines

Promoting, selling, recruiting, coursework and thesis posting is forbidden.

Students Click Here

Molded Urethane Covered Bearings - Formula to calculate failure under load

Molded Urethane Covered Bearings - Formula to calculate failure under load

Molded Urethane Covered Bearings - Formula to calculate failure under load

(OP)
Hi Guys,
I'm new to the forum and I appreciate anyone who can help.

I am working on a covered bearing product line and need help on defining some allowable loads for urethane covered bearings (over-molded). For example, the most common load this cover will see is when the bearing is mounted onto a shaft and the roller is forced against a load either riding on the covered bearing or the covered bearing is being pressed against the load while rotating.

I know this is a very dynamic situation and there are a lot of forces at work here. This is what I have found for similar types of loads and would like to see if anyone can offer guidance if this is even in the ball park conceptually.

U= [(.075*W*(b-a))/(E*S*(8b)^1/2)]^2/3

U=Deflection in inches
W=Load in pounds
a=inside radius of cover material
b=outside radius of covered material
E=Compression Modulus of cover material
S=cover width in inches

My thought is, if the calculation shows greater than 5-10% deflection then there is risk of the urethane material coming off of the bearing. That is the benchmark we have set so far, thoughts?


Below is an example of a competitor's website that shows allowable load values for this product....Can anyone tell me how they are coming up with these values?

RE: Molded Urethane Covered Bearings - Formula to calculate failure under load

I don't think any calculation will work for this.

I would start by defining failure (separation of overmold from bearing is one, also consider how much wear is acceptable) and defining the desired life of the product (in terms of rpm and distance). After that, you will need to perform testing to determine at what load you meet your desired product life with an acceptable amount of failures. Be sure to test at the worst case operating temperature and humidity conditions.

RE: Molded Urethane Covered Bearings - Formula to calculate failure under load

Almost certainly they created a test rig and did a lot of testing, both to confirm the basic mechanics and to confirm their production process to understand how to control failure modes.

RE: Molded Urethane Covered Bearings - Formula to calculate failure under load

(OP)
Thank you for the replies. This is what I thought as there are just too many factors with temperature, rpm, load, urethane make up, etc. Too many things that could be application specific and I agree the failure point or what is allowable could be very grey here... I really appreciate your help!


Nick

Red Flag This Post

Please let us know here why this post is inappropriate. Reasons such as off-topic, duplicates, flames, illegal, vulgar, or students posting their homework.

Red Flag Submitted

Thank you for helping keep Eng-Tips Forums free from inappropriate posts.
The Eng-Tips staff will check this out and take appropriate action.

Reply To This Thread

Posting in the Eng-Tips forums is a member-only feature.

Click Here to join Eng-Tips and talk with other members! Already a Member? Login


Resources

Research Report - How Engineers are Using Remote Access
Remote access enables engineers to work from anywhere provided they have an internet connection. We surveyed our audience of engineers, designers and product managers to learn how they use remote access within their organizations. We wanted to know which industries have adopted remote access, which software they are using, and what features matter most. Download Now
eBook - Managing the Context of Product Complexity Using the Digital Twin
Keeping track of changes to complex products is difficult—think Aerospace & Defense equipment, new generations of commercial aircraft, and software-based automobiles. A new way to managing the digital context of the physical product is required and the answer is the Digital Twin. This ebook explores the opportunity available for Operations and Maintenance for the Digital Twin. Download Now
White Paper - Trends in Industrial Filtration
Substantial progress has been made in filtration technologies in recent years. New filter media materials, designs and processes have led to filters that are more efficient, reliable, compact and longer lasting. This white paper will discuss the various trends that are impacting operational responsibilities of MROs today and the resources that are available for staying up-to-date on the latest filtration solutions. Download Now

Close Box

Join Eng-Tips® Today!

Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.

Here's Why Members Love Eng-Tips Forums:

Register now while it's still free!

Already a member? Close this window and log in.

Join Us             Close