×
INTELLIGENT WORK FORUMS
FOR ENGINEERING PROFESSIONALS

Log In

Come Join Us!

Are you an
Engineering professional?
Join Eng-Tips Forums!
  • Talk With Other Members
  • Be Notified Of Responses
    To Your Posts
  • Keyword Search
  • One-Click Access To Your
    Favorite Forums
  • Automated Signatures
    On Your Posts
  • Best Of All, It's Free!

*Eng-Tips's functionality depends on members receiving e-mail. By joining you are opting in to receive e-mail.

Posting Guidelines

Promoting, selling, recruiting, coursework and thesis posting is forbidden.

Students Click Here

Seismic Design for RC Rectangular Water Tanks

Seismic Design for RC Rectangular Water Tanks

Seismic Design for RC Rectangular Water Tanks

(OP)
Hi all, I am working on the design of a RC water tank, and I need your help...!!

Size and Structural Form

RC Rectangular Water Tank
- Designed as a Rigid Box Structure, as the Roof, Base & Walls are all monolithically connected
- Size of the Tank = 68m (Length) x 30m (Width) x 9m (Height)
- Thickness of Roof, Base, Walls = 0.4m



Baffle Walls
- 3 Baffle Walls inside the tank to guide the flow of water
- Designed to be Full-height Structural Wall transfering load from the Roof to the Base
- Not Full-length in order to allow water flow



Foundation
- Shallow Foundation sitting directly on Soil
- Base Slab acts as Foundation

Questions

1. What is the structural behaviour of the tank under seismic loading?
- The analysis shows that the roof has large in-plane deformation, resulting in high tension at far side, and compression at near side.
- The behaviour is similar to a beam sagging under UDL (compression at top; tension at bottom).
- The Roof does not act as a rigid diaphragm, but a flexible one.
- I reckon it is the actual behaviour, as the roof and the walls have same thickness, yet the roof has a much longer span (68m) while the wall is just 9m tall. The in-plane stiffness of the Roof should be smaller than the Walls. Given the smaller relative stiffness, the roof is flexible.
- I designed the tank with Slab Foundation, using Area Spring (z-axis)& Soil Spring (x & y-axis) at Base Slab. Does it affect the results??

2. Seismic Loading of the Tank
- Could anyone advise what is the best way to model the seismic loading?
- I tried equivalent lateral load method and response spectrum modal analysis method.
- However, the eq. lateral load method greatly amplify the effect in Q1 (giving very large tension at far side at roof, and compression at near side).
- To be clear, I used EC8, and apply the equivalent lateral load (base shear) as area load distributed to roof and walls according to their mass.
Replies continue below

Recommended for you

Red Flag This Post

Please let us know here why this post is inappropriate. Reasons such as off-topic, duplicates, flames, illegal, vulgar, or students posting their homework.

Red Flag Submitted

Thank you for helping keep Eng-Tips Forums free from inappropriate posts.
The Eng-Tips staff will check this out and take appropriate action.

Reply To This Thread

Posting in the Eng-Tips forums is a member-only feature.

Click Here to join Eng-Tips and talk with other members! Already a Member? Login



News


Close Box

Join Eng-Tips® Today!

Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.

Here's Why Members Love Eng-Tips Forums:

Register now while it's still free!

Already a member? Close this window and log in.

Join Us             Close