×
INTELLIGENT WORK FORUMS
FOR ENGINEERING PROFESSIONALS

Log In

Come Join Us!

Are you an
Engineering professional?
Join Eng-Tips Forums!
  • Talk With Other Members
  • Be Notified Of Responses
    To Your Posts
  • Keyword Search
  • One-Click Access To Your
    Favorite Forums
  • Automated Signatures
    On Your Posts
  • Best Of All, It's Free!

*Eng-Tips's functionality depends on members receiving e-mail. By joining you are opting in to receive e-mail.

Posting Guidelines

Promoting, selling, recruiting, coursework and thesis posting is forbidden.

Students Click Here

Definition of Knockdown Factor (KDF)

Definition of Knockdown Factor (KDF)

Definition of Knockdown Factor (KDF)

(OP)
I believe many of you guys has seen this term Knockdown Factor. I met this reduction factor in case of buckling of plates, corrosion.
Can anybody give me some guidance on the actual meaning of Knockdown Factor (KDF)? Or any book/doc I can refer to?

Thanks.

RE: Definition of Knockdown Factor (KDF)

The term knock-down factor is commonly used to describe the reduction in fatigue life in a corrosive environment (e.g. sour service) compared to performance in air. However, the mere concept of such a reduction factor is potentially misleading, particularly when comparing different welding procedures that demonstrate different in-air performance.

To demonstrate the performance of girth welds in a corrosive environment, strip fatigue tests are conducted in air and in a simulated service environment, to determine an appropriate knock-down factor, which is then applied to the base design curve. However, there are a number of ways that such knock-down factors can be calculated, with different degrees of conservatism. For example, two different welding procedures may exhibit a different fatigue performance in air, but a similar performance when tested in a sour environment. The better performing weld (in air) is therefore assigned a greater knock-down factor, and possibly a more stringent sour design curve. In other instances, fatigue performance in air may significantly exceed that required. The determined knock-down factor, between strip tests in air and in a sour environment, can then be very large. Applying this reduction factor to the design curve results in a very stringent sour design curve, and may penalize the use of a girth welding procedure that results in good in-air fatigue performance.

There are no explicit, published guidelines for calculating corrosion fatigue knock-down factors.[/tt]

Ahmad Hajeer, PMP, MBA

Red Flag This Post

Please let us know here why this post is inappropriate. Reasons such as off-topic, duplicates, flames, illegal, vulgar, or students posting their homework.

Red Flag Submitted

Thank you for helping keep Eng-Tips Forums free from inappropriate posts.
The Eng-Tips staff will check this out and take appropriate action.

Reply To This Thread

Posting in the Eng-Tips forums is a member-only feature.

Click Here to join Eng-Tips and talk with other members! Already a Member? Login



News


Close Box

Join Eng-Tips® Today!

Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.

Here's Why Members Love Eng-Tips Forums:

Register now while it's still free!

Already a member? Close this window and log in.

Join Us             Close