ISO8855 toe and camber angle definition into rotation matrix form
ISO8855 toe and camber angle definition into rotation matrix form
(OP)
Dear forum members,
ISO8855 defines both the static toe angle and the camber angle as a rotation around one of the axis's of the vehicle coordinate system.
I would like to define a rotation matrix in which both angles are correctly assigned. So my starting point is having two scalar angle values, one for the toe angle and one for the camber.
The toe angle is defined as the angle between the wheel plane and the X_v axis about the Z_v axis. And the camber angle (epsilon_v) as the angle between the wheel plane and the Z_v axis about the X_v axis. The denominator 'v' stands for the vehicle axis system.
The problem is when you use a rotation matrix formulation that the second (and third) rotation is defined as a rotation in the coordinate system that results from the first rotation. And looking at the ISO8855 definition, you need to perform both rotations in the vehicle axes system. Which is not possible with an Euler angles/rotation matrix formulation directly. But I am sure one of you knows a simple solution to make such a formulation.
I am aware that the error you make is relatively small if you just do the second rotation in the second coordinate system (if you make the assumption that the angles are small), but I would to do it exactly.
ISO8855 defines both the static toe angle and the camber angle as a rotation around one of the axis's of the vehicle coordinate system.
I would like to define a rotation matrix in which both angles are correctly assigned. So my starting point is having two scalar angle values, one for the toe angle and one for the camber.
The toe angle is defined as the angle between the wheel plane and the X_v axis about the Z_v axis. And the camber angle (epsilon_v) as the angle between the wheel plane and the Z_v axis about the X_v axis. The denominator 'v' stands for the vehicle axis system.
The problem is when you use a rotation matrix formulation that the second (and third) rotation is defined as a rotation in the coordinate system that results from the first rotation. And looking at the ISO8855 definition, you need to perform both rotations in the vehicle axes system. Which is not possible with an Euler angles/rotation matrix formulation directly. But I am sure one of you knows a simple solution to make such a formulation.
I am aware that the error you make is relatively small if you just do the second rotation in the second coordinate system (if you make the assumption that the angles are small), but I would to do it exactly.
RE: ISO8855 toe and camber angle definition into rotation matrix form
I've made a 3D model of SLA in which I calculated both toe and camber (along with many other parameters- scrub radius, mechanical trail, KPI, caster, &c), and assuming one knows the vector normal to the ground and wheel axis vector it can be pretty easily done... (if you need the process to go the other way around, I might also be of some help).
Incidentally, if I may ask- this camber definition IMHO should be applicable only with no steering input, or am I wrong? (it seems more logical that camber should be 'measured' when viewing the tyre from the front, not the vehicle)
RE: ISO8855 toe and camber angle definition into rotation matrix form
The definition is indeed such that no steer angle is applied. There is another definition, the inclination angle epsilon_w, which is the angle with respect to the road and between the wheel plane. But that's not the definition I need.
Calculating the angles from the simulation results is fairly simple, since you do simply two successive calculations using the instantanious velocity vectors.
Can you give me a hint how to use the transformation tensor?
RE: ISO8855 toe and camber angle definition into rotation matrix form
I used my own coord. system, so I better check few things out- vehicle coord. system in SAE is x to front, z downwards and y defined by those two (to port, speaking off top of my head), and you want coordinate system where x points where the tyre points, z downwards in the wheel plane and y defined by those two)? Toe-in is negative in SAE?
RE: ISO8855 toe and camber angle definition into rotation matrix form
Buuut, please have someone check this, etc, etc. The disclaimer is there for a reason- I'm prone to brainfades. The calculations were made in Mathcad (exported to pdf), and I've included 'unneccessary' equations describing how I got there- but the only relevant equations are those with := sign (others have equal sign in bold). Basically, you have 8 equations to calculate the transformation tensor.
Hope it helps.
RE: ISO8855 toe and camber angle definition into rotation matrix form
The problem is that your derivation is equal to the Euler axis representation or rotation matrix form. Which is exactly the thing I used to do before, but then with a conventional (and in my opinion easier) rotation matrix derivation. I have included it in the attachment. You can have a look at it and use it yourself in the future if you like. I have noticed that element R13 and R31 have changed position. I did not look into the exact reason for that.
I will try to explain my problem a bit more. First by explaining the problem with the rotation matrix derivation. The problem is that you do a successive rotation of (in this case only) two angles. First you perform a rotation about the z-axis on the initial coordinate system (let's call it CS1). This rotation is obviously the steer/toe angle. Then you end up with a new coordinate system (CS2). In this new CS2 you perform the second rotation about its x-axis (the x-axis of the CS2 and not the CS1). And end up with CS3, which has no third rotation needed. This is quite straight forward and maybe even intuitive, but conflicts with the ISO8855 definition, which states that both the toe angle and camber angle have to be rotated about the z and x-axis of the first (CS1) coordinate system respectively. To do so I am looking for a way to rotate the second coordinate system (CS2) around the x-axis of the first coordinate system (CS1).
I hope this explanation makes it a little bit more clear. I agree also that the ISO definition is a bit counterintuitive and also difficult to measure in reality on a vehicle.
Have you, or someone else, a clue how to achieve such a rotation?
RE: ISO8855 toe and camber angle definition into rotation matrix form
RE: ISO8855 toe and camber angle definition into rotation matrix form
RE: ISO8855 toe and camber angle definition into rotation matrix form
http://mathworld.wolfram.com/RotationFormula.html
Thanks again WolfHR!
RE: ISO8855 toe and camber angle definition into rotation matrix form
Interestingly, Wolfram site has slightly different formula (cosine multiplier)- v-(a*v)*a instead of (nxa)xn . I used this formula as a basis for my 3D suspension model in Mathcad (and flash)- and even though modeling the geometry was pretty straightforward I got into my thick skull I should also calculate kinematic and dynamic parameters (velocities and accelerations), and I can tell you that 2nd derivation of that formula is a b*tch, especially when applied twice. I'm somewhat relieved to see that this representation would've made for even more complicated formulae.