bvc
Electrical
- Mar 5, 2011
- 14
Dear all,
Kindly correct my observations if wrong :
1) In any circuit, the current is produced by means of application of a voltage. Thus voltage is the cause and current the effect.
2) The phasors representing the various currents and voltage show the phase relationship between the components having the same frequency. Thus a phasor which is shown leading w.r.t another can be termed as leading the second phasor in time domain also. Thus, I can say that the first quantity say for example , a voltage is applied before the second quantity e.g current. In case of a resistance, I can say the current appears as soon as the voltage is applied. In case of an inductive circuit, the inductive current appears after a time delay of application of voltage as the inductor does not allow the current through it to change suddenly. In case of a capacitor, the current takes more time to reach steady state as it is an insulator so naturally, it must take more time for the current to flow through it after application of the voltage across it. So in this regard, is it fine to say that the current in case of a capacitor lags the voltage by 270 degree ( that is more time than inductor or resistor) ? I cannot fit a leading current with the time lag explanation as I don't understand how a current can flow through a capacitor without application of voltage ?
Waiting for the comments.
Thanks.
Kindly correct my observations if wrong :
1) In any circuit, the current is produced by means of application of a voltage. Thus voltage is the cause and current the effect.
2) The phasors representing the various currents and voltage show the phase relationship between the components having the same frequency. Thus a phasor which is shown leading w.r.t another can be termed as leading the second phasor in time domain also. Thus, I can say that the first quantity say for example , a voltage is applied before the second quantity e.g current. In case of a resistance, I can say the current appears as soon as the voltage is applied. In case of an inductive circuit, the inductive current appears after a time delay of application of voltage as the inductor does not allow the current through it to change suddenly. In case of a capacitor, the current takes more time to reach steady state as it is an insulator so naturally, it must take more time for the current to flow through it after application of the voltage across it. So in this regard, is it fine to say that the current in case of a capacitor lags the voltage by 270 degree ( that is more time than inductor or resistor) ? I cannot fit a leading current with the time lag explanation as I don't understand how a current can flow through a capacitor without application of voltage ?
Waiting for the comments.
Thanks.