Those computer-equations didn't work. Let me use the other format:
Differential equation:
f(t)=m*diff(x(t),t,t)+c*diff(x(t),t)+m*x(t);f(t) = m*diff(diff(x(t),t),t)+c*diff(x(t),t)+m*x(t)
Transfer function H(w)=X(w)/F(w):
> H(w):=m*(I*w)^2+c*(I*w)+k;
H(w) := -m*w^2+I*w*c+k
Magnitude of transfer function:
> Hmag:=sqrt((k-m*w^2)^2+(w*c)^2);
Hmag := (k^2-2*k*m*w^2+w^4*m^2+w^2*c^2)^(1/2)
Derivative of magnitude of transfer function wrt w
> Hmagdiff:=diff(Hmag,w);
Hmagdiff := 1/2/(k^2-2*k*m*w^2+w^4*m^2+w^2*c^2)^(1/2)*(-4*k*m*w+4*w^3*m^2+2*w*c^2)
Find the resonance at point where Hmag is max (deriv=0):
> wr:=solve(Hmagdiff=0,w);
wr := 1/2*(4*k*m-2*c^2)^(1/2)/m
> Hmagresonance:=subs(w=wr,Hmag);
Hmagresonance := (k^2-1/2*k/m*(4*k*m-2*c^2)+1/16*(4*k*m-2*c^2)^2/m^2+1/4*(4*k*m-2*c^2)/m^2*c^2)^(1/2)
> Hangle_resonance:=arctan(Im(H(w))/Re(H(w)));
Hangle_resonance := arctan(-w*c/(m*w^2-k) (I think)
The solution X will have a magnitude given by the magnitude of H at resonance times the magnitude of F. The angle of X with respect to F is given by Hangle_resonance above