Not an Engineer
I going to step out on a limb here and make some assumptions. So I may wind up making a fool out of myself. On the other hand, you guys might find some information and understanding in what I think worth future polymer anchoring material selection consideration.
One anchoring material supplier’s name has come up in the media, so I ventured to their website and searched for the material that I would select, if I were so cavalier, as to use a polymer anchoring material for overhead grouting in a tensile-shear loading application.
Based on the magnitude of the project, need for longevity, consideration for heat/strength reduction, damp or wet conditions, anticipated underground low-ambient and low-substrate temperature and the benefit of speed of construction/cure schedule; my knee-jerk choice would be the material with the 176 deg. F. HDT (Heat Deflection Temperature).
The product certainly has lots of comfort notations i.e., IIC Research Report #, City of LA-RR#, references to DOT’s blah, blah, blah. It also claims it “meets” with ASTM C881 Type IV (Structural) Grade 3 (Paste) Class A, B, & C.
Reviewing the IIC-RR and the LA-RR, there ARE in fact provisions for the use of this material in overhead grouting, which to some extent, caution the structural engineer, (from here you’re on your own). I was surprised somewhat, to see this.
Fastener companies have been manufacturer-members of ICBO/ICC far, far longer than adhesive manufacturers. Prior to circa 1990 (Loma Prieta, Earthquake) few epoxy adhesive manufacturers were willing to forfeit the money to join regional organizations such as ICBO and submit their products for UBC evaluation. The test criteria were mostly developed for and influenced by the fastener producers and relevant to Polyester and Vinyl Ester capsule anchoring systems. Subsequently, in the wake of Loma Prieta, if you were fortunate enough that your product had, at the very least, a LA-RR and independent test results demonstrating compliance with ASTM C881-87; your product became an engineer’s preferred, specified brand.
The provincial aspects of City of Los Angeles-Research Reports and the esoteric properties of ASTM C881 were not always enough for Code compliance officials, who were now looking hard at a long overlooked area of concern, the pull-out strength of polymer grouted dowels, rebar and threaded rod. And while construction adhesive producers had flirted with cartridge type packaging for years, the cost of this packaging (including labor) was and still is very high, especially when considering the volume of material supplied per package. Necessity proved to be the courage that forced adhesive producers supplying the California construction market, to swallow the bitter pill of applying to ICBO now ICC for a UBC harmonized research report regulated product.
The problem I find is that the research reports focus so much on the pull-out data that little information is revealed or caveats made about the handling of the materials reported.
According to one Big Dig media blurb, wet - in other words, more than damp (ASTM C882 Bond Strength-saturated surface dry) test conditions were a frequent jobsite condition. WET Conditions existed.
According to the manufacturer -
NOT A PROBLEM – The material is used in “wet environments”. It is “All-Weather” and fast cure, even in low temperatures. Better still it is an optimal material for use in “diamond core drilled holes” It is also non-flammable, something worth noting when working underground.
This is the best product – Yes?
It has charts coming out the yin-yang and thousands of numbers.
So what’s wrong?
There is no % tensile elongation value and no compressive, tensile or flexural modulus values. Any of these might give an engineer cause to think twice. The valves shown are not qualified by test temperature. You have to therefore “assume” standard conditions (23 deg C).
Here is what else I see: The compressive strength is low for so high and HDT “Epoxy”. The C882 bond strengths are low and no explanation is given for the 2 values shown. Wet? Dry? What is this information? The values are low, very low if 23 deg C. is the test temperature. Well… 2 days is not that long, WHAT IS THE FULL CURE CYCLE, DOESN’T SAY ANYWHERE. The Slant shear number looks good, but then slant shear and ASTM C882 are supposed to be the same thing, so just what does ASTM C732 represent?
Oh, Punch Shear, but how thick was the test specimen? Thickness vs. result in this case, is kind of important; they make the same mistake on there other literature, wrong test description.
+ The Shore D hardness is very good. You can barely dent this material with a sharp spring loaded needle.
+ The shrinkage is very low and the absorption is right on target for a high strength epoxy.
I scratch my head when it comes to the flexural strength. For epoxies, the flexural strength ought to be half way between the tensile strength and the compressive strength, or more towards the compressive strength. Modulus numbers would help to explain the low flexural strength. Without the modulus numbers I can’t really tell if there is something weird about the product. One possibility is that the modulus numbers are higher that usual, which follows with the HDT and a very respectable Shore D. This causes me some worry, because the shrinkage is very low, not too low but this material is described as an epoxy-acrylate. Acrylates shrink. And fast reacting materials generate a lot of reaction heat. Could this material have a high internal stress? The product is listed and approved for live loading, so even though it may be high-stressed in its cured state - for highly confined applications such as grouting dowels into holes with minimal bond line thickness and “proportionally”, a low volume of adhesive and a very large surface area for bond; internal stress and the strain it would impart to the bond line does not appear to be problematic.
This material really does have some outstanding properties. The high HDT, the ability to cure in wet conditions AND over a wide range of temperatures (even below freezing). This material is not your everyday epoxy something else is going on.
To begin with, the 176 deg F. HDT is virtually impossible to achieve using the kinds of epoxy materials that engineers are accustom to seeing. At best under standard laboratory (room temp) cure conditions (23 deg. C), the maximum HDT for the best civil engineering epoxy adhesives tops out at about 145 deg. F., with a full cure of 14 days. Elevated temperature post curing for some formulations will yield HDT’s of around 165 deg. F. This elevated (120 deg. F +) temperature cure would not occur in a cold dank tunnel.
These typical epoxy formulas are frequently used for composites but the gel-time, cure to handling time, and subsequent “oven-cure” time are all scheduled. Under these conditions, the same formula can yield HDT’s as high as 250 deg. F.
Epoxy materials also have different stages of cure or “cure envelopes”. The cure stages are A, B, and C.
Stage A – is working life to gel time, Stage – B is a hard material, that is brittle (you can handle it, but you shouldn’t apply dynamic or sustained static loads) it is not impact or creep resistant and Stage – C, Full cure. Sometimes materials get stuck in the B stage; this is usually because temperatures have dipped below the activation energy temperature of the curing agent. If or when temperatures return to the activation energy temperature, the epoxy will continue to cure. The material will not usually gain the full strength that it would have if the cure cycle had been uninterrupted but in many cases a C stage cure is obtained. Think of it this way, for the molecules trying to hook-up (crosslink) it is like getting frozen in water as it plunges over the falls and after thawing out into hip deep muck. It is much much harder to get around. Inertia…
So how does the 176 deg. F, material obtain the high HDT? Looking at the MSDS reveals that this product is not cured using the Amine type curing agents typical of most civil engineering epoxy adhesives. The reactant is Dibenzoyl Peroxide. The “epoxy-acrylate” resin is also a vinyl ester, so some polyester is part of the monomer.
This material reacts via Free Radical/Homo-polymerization. This is why it cures at low temperatures, cures quickly and develops enough energy to gain such a high HDT. And, both the resin and the initiator are immiscible in water, which is why it can cure largely unaffected by immersion in water. It is fast like MMA polymer concrete or Bondo autobody filler. It is low temperature cure like MMA polymer concrete and some HMWM bridge deck sealers.
And like MMA and HMWM it can suffer oxygen inhibition. When Free Radical polymerization gets stuck it stops completely and does not start back up. It dead and you’ve got crap. Wet aggregate can inhibit MMA polymer concrete. HMWM bridge deck sealers can suffer surface inhibition under cold damp “heavy dew” conditions (this happened to Sika and CalTrans years ago on the San Mateo-Hayward bridge). Likewise, moisture/oxygen inhibition can inhibit adhesion/cure properties at the bond line.
This material may be fast and it may have a high HDT, it may cure at low temperatures and it may cure to a very hard solid underwater; it just can’t be all these things at the same time. And the data provided by the manufacturer, WHOOPS! Actually the manufacturer is a company, according to my internet sleuthing is called SOCOM in Cardet, France that private labels. The data does not come anywhere near to demonstrating just how it can do all these things at the same time.
Here are three scenarios, each of which could/probably did happened.
- Low Temperature, Wet, Slow Cure & Difficult placement (bar was pushed in repeatedly while trying to make it fast) = Inhibition & brittle material, degraded overtime by hydrolysis. OH! And damp threaded rod.
- 60 deg. Air temp & 50 deg. Concrete (wet or damp). OH! And damp threaded rod and fast cure = Hard full strength material with some oxygen inhibition at the concrete and threaded rod bond lines. Consequently hydrolytic degradation.
- 60 deg. Air temp & 50 deg. Concrete (dry). Everything is great except it is really difficult to squirt material out of a long nozzle, get it to stick to the end of the hole and somehow tweek the nozzle, without being able to see what is going on, up in there, to get it to stick to the sides of the hole. Building layer upon layer, it would take a lot of time. Otherwise you stick the nozzle in the hole a keep filling until you feel resistance and start withdrawing the nozzle, creating air pockets as you go. = You took to much time; the material has started to gel beyond its ability to wet-out the threaded rod. THIS stuff goes off like polyurea that’s why the bond strengths are so low. I question whether the 2 day, bond strengths increase and would not be surprised it the Wet bond strength was less at 14 days. It is so fast that it is starting to thicken before it exits the static mixer and quickly reaches a gellation phase where it sticks together internally but doesn’t grab the substrate.
There is nothing about this material that suggests it bonds better to wet or damp concrete than other epoxy formulations; it is the immiscible property of the material that lends itself to a high degree of mechanical bond in the confines of a hole than would give it some (maybe temporary) advantage. I think its elcometer tensile pull-off values would be relative to other moisture tolerant epoxies but possibly degrade much faster over time if oxygen inhibition plays a role. Given conditions where immiscibility and mechanical bond are the pull out resistance building properties, internal stress in the adhesive and subsequent strain to the bond line would become a concern. And field testing threaded rod by sounding with a hammer would not be beneficial.
I’m not a Guru when it come to Free-Radical polymerization so the full depth of how much oxygen inhibition and the role water can play in such a circumstance is based on my knowledge of MMA and HMWM.
I think it would be well worth it to ACI, ASTM and Building Code organizations to qualify manufactures (perhaps on a proprietary basis) as genuine formulator or private label/repackager, and restrict their committee participation accordingly. Absent in-house formulating knowledge gross assumptions are frequently made. To make a point, please note that Dibenzoyl Peroxide is a DOT Haz Class, Packing Group II, Oxidative Peroxide material with its very own Yellow Hazard label and label # 5.2, UN3108, PG II, seemingly the epoxy-acrylate from this source has the special ability to transcend DOT restrictions by Air, Sea and Land. Can’t find another MSDS for a material that includes Dibenzoyl Peroxide were this is kind of exemption exists. Wishful thinking or greed?
I started out with a remark about the assumptions I have made here, so enough said.