×
INTELLIGENT WORK FORUMS
FOR ENGINEERING PROFESSIONALS

Contact US

Log In

Come Join Us!

Are you an
Engineering professional?
Join Eng-Tips Forums!
  • Talk With Other Members
  • Be Notified Of Responses
    To Your Posts
  • Keyword Search
  • One-Click Access To Your
    Favorite Forums
  • Automated Signatures
    On Your Posts
  • Best Of All, It's Free!

*Eng-Tips's functionality depends on members receiving e-mail. By joining you are opting in to receive e-mail.

Posting Guidelines

Promoting, selling, recruiting, coursework and thesis posting is forbidden.

Students Click Here

Transformer derating for Neutral Harmonic Currents - Harmonic Current Scaling?
2

Transformer derating for Neutral Harmonic Currents - Harmonic Current Scaling?

Transformer derating for Neutral Harmonic Currents - Harmonic Current Scaling?

(OP)
Hello

I have a harmonic current spectrum from a system test performed which could be only loaded 25% of its rated load (the remaining loads are still under construction). All the loads are L-N well distributed. There is no other type of load in this system.

To obtain the full load (100%) harmonic spectrum can the harmonic orders be scaled by four (measured spectrum multiplied by 4)? Is there an empirical formula that can be used here OR since all loads will be well-distributed scaling should be fine?

Will be using this data for transformer derating calculation based on IEEE C57.110-2018.

RE: Transformer derating for Neutral Harmonic Currents - Harmonic Current Scaling?

What is the nature of the loads?
Is distortion power factor a factor?
--------------------
Ohm's law
Not just a good idea;
It's the LAW!

RE: Transformer derating for Neutral Harmonic Currents - Harmonic Current Scaling?

(OP)
What is the nature of the loads? - Non-linear loads. Only loads on the system are switching power supply units L-N (277V)
Is distortion power factor a factor? Yes

RE: Transformer derating for Neutral Harmonic Currents - Harmonic Current Scaling?

The harmonic spectrum of a system is proportional to the load current, so it is possible to scale the harmonic orders by multiplying the measured spectrum by a factor that represents the desired load level. In this case, if the system is currently loaded to 25% of its rated load and you want to determine the harmonic spectrum for a 100% load, you could multiply the measured spectrum by 4.

However, it is important to consider the type of loads and their distribution when scaling the harmonic spectrum, as this can affect the accuracy of the results. In this case, since all the loads are L-N well-distributed, scaling the harmonic orders by 4 should be a reasonable approximation.

It's also worth noting that the accuracy of the scaling method may depend on the measurement method used to obtain the harmonic spectrum, as well as the quality of the measurement data. It is always a good idea to validate the results of any scaling calculation with actual measurements taken at the desired load level, if possible.

For transformer derating calculation based on IEEE C57.110-2018, it is also important to consider the load types and the contribution of each harmonic order to the overall harmonic distortion level. The standard provides guidelines for calculating the harmonic derating factor for transformers based on the harmonic content of the load current, as well as other factors such as the type of transformer and the ambient temperature.

RE: Transformer derating for Neutral Harmonic Currents - Harmonic Current Scaling?

Triplen harmonics sum on the neutral.
The fundamental currents cancel on the neutral.
Neutral current will be the unbalanced in phase current plus three times the triplen harmonic currents.
Seat of the pants engineering:
Measure your line currents. If they are not balanced, drop loads until the line currents are closely balanced.
Measure the neutral current.
The in-phase components will have cancelled, and you will be reading the harmonic currents.
Then, you may multiply this current by the reciprocal of the PU line current to estimate the neutral current at full load.

Quote (OP)

well-distributed scaling should be fine?
YES.

200% rated neutral bus is common for panels intended for harmonic loads.
By code, there shall be no reduction in the ampacity of neutral conductors. (You may decide to increase the neutral conductor ampacities above 100%. With significant harmonics, derating may be applied to circuits with three phases and a loaded neutral in a conduit or cable.
(More than 3 current carrying conductors.)

--------------------
Ohm's law
Not just a good idea;
It's the LAW!

Red Flag This Post

Please let us know here why this post is inappropriate. Reasons such as off-topic, duplicates, flames, illegal, vulgar, or students posting their homework.

Red Flag Submitted

Thank you for helping keep Eng-Tips Forums free from inappropriate posts.
The Eng-Tips staff will check this out and take appropriate action.

Reply To This Thread

Posting in the Eng-Tips forums is a member-only feature.

Click Here to join Eng-Tips and talk with other members! Already a Member? Login


Resources

Low-Volume Rapid Injection Molding With 3D Printed Molds
Learn methods and guidelines for using stereolithography (SLA) 3D printed molds in the injection molding process to lower costs and lead time. Discover how this hybrid manufacturing process enables on-demand mold fabrication to quickly produce small batches of thermoplastic parts. Download Now
Design for Additive Manufacturing (DfAM)
Examine how the principles of DfAM upend many of the long-standing rules around manufacturability - allowing engineers and designers to place a part’s function at the center of their design considerations. Download Now
Taking Control of Engineering Documents
This ebook covers tips for creating and managing workflows, security best practices and protection of intellectual property, Cloud vs. on-premise software solutions, CAD file management, compliance, and more. Download Now

Close Box

Join Eng-Tips® Today!

Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.

Here's Why Members Love Eng-Tips Forums:

Register now while it's still free!

Already a member? Close this window and log in.

Join Us             Close