Contact US

Log In

Come Join Us!

Are you an
Engineering professional?
Join Eng-Tips Forums!
  • Talk With Other Members
  • Be Notified Of Responses
    To Your Posts
  • Keyword Search
  • One-Click Access To Your
    Favorite Forums
  • Automated Signatures
    On Your Posts
  • Best Of All, It's Free!

*Eng-Tips's functionality depends on members receiving e-mail. By joining you are opting in to receive e-mail.

Posting Guidelines

Promoting, selling, recruiting, coursework and thesis posting is forbidden.

Students Click Here

Heat Exchanger Sizing Question

Heat Exchanger Sizing Question

Heat Exchanger Sizing Question

Im looking to purchase a heat exchanger to cool oil in circulating lube oil system.
This will be cooled by the shop water line.

I had initially suggested these types.

Heat Capacity = 70HP/170,000 BTU
Oil Flow Rate = 21 GPM
Shop Water Flow Rate = 15 GPM
Water In = (60F - 90F)
Water Out = N/A (Water Will be Dumped out)
Oil In = 150F
Oil Out = 100F (Going Back into the system)

What is a good-sized heat exchanger for this application?

RE: Heat Exchanger Sizing Question

Once through water to drain for cooling is irresponsible.

RE: Heat Exchanger Sizing Question

Once through cooling with city water is illegal in many US jurisdictions and can get very expensive.

RE: Heat Exchanger Sizing Question

Why water and not air cooled?

Heat capacity of your oil?

Look closely on how they've calculated the heating and look at your flows and temperatures which seem to be higher or lower than mentioned in the website listing.

For off the shelf HXs, you need to be within their stated limits or it won't work.

Remember - More details = better answers
Also: If you get a response it's polite to respond to it.

RE: Heat Exchanger Sizing Question

Do the math, for a simple one shift operation this is about 70,000gal/yr
If you work 6 days a week x 3 shifts it is more like 200,000gal/yr
Even when I worked places with private wells we used cooling towers and recirculated the water.
There are plenty of helps out there to size the HX.
The biggest issue is the variation in cooling water temperature.
Whether this is morning to afternoon or season to season it is a big factor.
There are different ways to deal with this, from multi-speed or variable speed pumps to multiple HX in parallel.
You need to hire someone that know how to do this.
There are skid mounted pre-engineered packages available with cooling tower and HX bundled.

= = = = = = = = = = = = = = = = = = = =
P.E. Metallurgy, consulting work welcomed

RE: Heat Exchanger Sizing Question

Thank you all for the feedback.
Ideally my boss would like to use water for oil cooling.
What additional information is needed to help narrow down some options?

RE: Heat Exchanger Sizing Question

Sam M Be aware - even if your local jurisdiction allows once-through flow on your secondary coolant (i.e., water side), there will be limits on the maximum temperature of that coolant as it exits the heat exchanger back into the environment. It is not uncommon for this restriction to be in the range of 3 C (5 F) above the inlet temperature. Note that if you opt for a recirculating secondary system, this severe constraint goes away (somewhat) as the cooling tower will generally handle a wider hot-cold variation.

Converting energy to motion for more than half a century

RE: Heat Exchanger Sizing Question

You would still use water, just not dump it.
You need a small cooling tower.
These are usually fiberglass (or some other non-metalic) and they have a fan and a circulation pump.
Some of them have a two speed pump motor so that you have high and low cooling options.
This circ pump would run water through the HX to cool the oil.
You need to calculate the heat load to size the cooling tower and then you can size the HX.
Yes, it is more complex. And the cooling tower will require some ongoing makeup water and chemical treatment.

= = = = = = = = = = = = = = = = = = = =
P.E. Metallurgy, consulting work welcomed

RE: Heat Exchanger Sizing Question

If your cooling shop water supply can be at 90degF, then getting oil cooled down to 100degF wont be possible unless you choose a full countercurrent plate heat exchanger (and even then it may not be easy). Besides, shop water will have to be clean and free of solids if you choose a compact plate HX. This may perhaps be the most you can expect - temps in degF :
Option A - 2(or more) tube side pass TEMA U HX
Water in / out : 90 / 100
Oil in / out: 150 / 110

Option B: - Full countercurrent shell and tube HX
Water in / out : 90 /100
Oil in / out : 150 / 100

Option C : Full countercurrent compact wide plate HX - clean non fouling service only on both sides.
Water in / out : 90 / 100
Oil in / out : 150 / 95 to 100

For option C, a compact spiral HX could handle a more fouling service, and can be cleaned also. Allow some 5psi dp minimum for water side and same for oil side.

RE: Heat Exchanger Sizing Question

I appreciate the feedback - i tried using the basic heat exchanger equation but the unknown was obviously the exit water temperature. The shop water does not quite get to 90 F - That was more of a guess of ambient temperature. Ill play with the numbers but i think the missing input to the heat exchanger equation would be the limitations of how hot exit temperature can be on the water per city specs.

RE: Heat Exchanger Sizing Question

Still going for once through complete waste of treated water?

Remember - More details = better answers
Also: If you get a response it's polite to respond to it.

RE: Heat Exchanger Sizing Question

Thats right complete waste - my city regulations are 95F max for waste water.

RE: Heat Exchanger Sizing Question

The first thing you need to do is an energy balance to determine your water outlet temperature. This is useful because it tells you whether you need countercurrent flow or if mixed co-current/countercurrent flow is possible as you would have with a multi-pass shell and tube heat exchanger. It also tells you the required temperature approach.

Just eyeballing this it looks like you need pure countercurrent flow so a small fixed-tubesheet shell and tube heat exchanger might work but you'd probably need somewhere around 200-300 sq. ft. of surface area.


RE: Heat Exchanger Sizing Question

To address the calculation method part of the question, using the NTU method is my advice when an outlet stream temperature is not known.

Having the water max temperature be 95°F and a situation where the cooling water is anywhere near 90°F is going to be challenging, as others have mentioned. I'm surprised your boss doesn't want to investigate air cooling and I think it may be necessary to show why it should be considered given that it may be a more cost effective solution to your problem. Did your boss give a reason for discounting air cooling?

I'm assuming you're confident that your drain pipe can't handle 95°F with no problems in their current state because someone did a routine borescope inspection within the last 5-ish years (forgive me, it's a recent sore subject).

RE: Heat Exchanger Sizing Question

Consider the purchase of a small used STHX. Ensure that it is cleaned, painted and HYDROTESTED, as part of the sales agreement

Your temperature demands are modest ....

It sounds like the junkyards would be full of HXs in the size and materials you desire

Sr. Process Engineer

RE: Heat Exchanger Sizing Question

Hello all,

Thank you for the feedback.
In doing the basic heat exchanger equation, i came up with the following.
Using my original temperature values and having a max runoff water temp of 95F (Also replacing inlet water temp with 85 F max)

Q (Heat Transfer Rate) = 175,000 BTU/Hr
U (Heat Transfer Coeff) = (25 - 250) BTU/Hr*F*Ft^2 (Common measurements I found online for my situation)
A (Heat Transfer Area) = Unknown
dTm (Log Mean Temp Diff) = 30.79 F

∴ A = Q/U*dTm

A(Umax) = 28.41 ft^2
A(Umin) = 227.34 ft^2

Looks like Christine74 was fairly spot on.
Am i on the right track?

Best Regards,
Sam M

RE: Heat Exchanger Sizing Question

Oil mass flow = 4050 kg/hr, assuming rho = 850kg/m3
Oil Cp = 2.5kJ/kg/degC, assumed
Oil dt = 27.8degC
Duty = 4050 x 2.5 x 27.8 = 281 600 kJ/hr = 267 000 Btu/hr

RE: Heat Exchanger Sizing Question

80kW of heat rejection.

What happens now or is this a new installation?

What is cooling the rest of the machine?

Remember - More details = better answers
Also: If you get a response it's polite to respond to it.

RE: Heat Exchanger Sizing Question

air cooled would be more environmentally sound, but provisions should be made for fouling due to accumulated dirt , and tube spacing to allow external cleaning with high pressure water jets . At most power plants the air cooled is initially provided but often replaced with water cooling to improve reliability but at an environmental cost, this lesson is learned after siezing and destroying bearings that overheated due to overheated oil. The cooled oil stream should have thermocouples wired to an alarm to alert operators that it is time to clean the HX.

"...when logic, and proportion, have fallen, sloppy dead..." Grace Slick

RE: Heat Exchanger Sizing Question

Dave, we had equipment that ran an air cooler (fin-fan) followed by a water cooled HX.
During low load or cool weather the F-F was plenty of cooling (in cool weather even with the fan off).
When the outlet temp was too high the water flow valve opened to get us additional cooling.
This kept both units small and it minimized water use.

= = = = = = = = = = = = = = = = = = = =
P.E. Metallurgy, consulting work welcomed

RE: Heat Exchanger Sizing Question

We seem to have lost the OP - last log in 8th Feb.

I would have liked to see some closure on this one.

Remember - More details = better answers
Also: If you get a response it's polite to respond to it.

Red Flag This Post

Please let us know here why this post is inappropriate. Reasons such as off-topic, duplicates, flames, illegal, vulgar, or students posting their homework.

Red Flag Submitted

Thank you for helping keep Eng-Tips Forums free from inappropriate posts.
The Eng-Tips staff will check this out and take appropriate action.

Reply To This Thread

Posting in the Eng-Tips forums is a member-only feature.

Click Here to join Eng-Tips and talk with other members! Already a Member? Login


Low-Volume Rapid Injection Molding With 3D Printed Molds
Learn methods and guidelines for using stereolithography (SLA) 3D printed molds in the injection molding process to lower costs and lead time. Discover how this hybrid manufacturing process enables on-demand mold fabrication to quickly produce small batches of thermoplastic parts. Download Now
Design for Additive Manufacturing (DfAM)
Examine how the principles of DfAM upend many of the long-standing rules around manufacturability - allowing engineers and designers to place a part’s function at the center of their design considerations. Download Now
Taking Control of Engineering Documents
This ebook covers tips for creating and managing workflows, security best practices and protection of intellectual property, Cloud vs. on-premise software solutions, CAD file management, compliance, and more. Download Now

Close Box

Join Eng-Tips® Today!

Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.

Here's Why Members Love Eng-Tips Forums:

Register now while it's still free!

Already a member? Close this window and log in.

Join Us             Close