×
INTELLIGENT WORK FORUMS
FOR ENGINEERING PROFESSIONALS

Contact US

Log In

Come Join Us!

Are you an
Engineering professional?
Join Eng-Tips Forums!
  • Talk With Other Members
  • Be Notified Of Responses
    To Your Posts
  • Keyword Search
  • One-Click Access To Your
    Favorite Forums
  • Automated Signatures
    On Your Posts
  • Best Of All, It's Free!

*Eng-Tips's functionality depends on members receiving e-mail. By joining you are opting in to receive e-mail.

Posting Guidelines

Promoting, selling, recruiting, coursework and thesis posting is forbidden.

Students Click Here

Heat Flow in a Pipe with integrated Sensor

Heat Flow in a Pipe with integrated Sensor

Heat Flow in a Pipe with integrated Sensor

(OP)
Hello,
I have the following problem and hope you can help me. I have the setup as shown in the drawing. A pipe that is flowed through, and in the middle of it another pipe, but at the end of this branch is a sensor. Initially the fluid would flow, with a temperature of 25°C. If my thought is correct, the pipe with the sensor (if there is a drain valve) would fill with the liquid and then rest, because there would be no more flow, since it has nowhere to flow.
Now the liquid is slowly heated (heating to about 350°C) and continues to flow the same way. How would the temperature in the branch change? This would have to be still relatively cold at the sensor, since no exchange of the liquid takes place, since no flow is present in the branch, or do I have there a mistake in my thought?
How would you calculate the heat exchange between the flowing and standing medium? Because there is heat exchange only there, which would then have to be "up" through the entire water column. Can we calculate this in a simplified way as forced convection on a plane wall and assume the fluid portion in the branch as a plane wall?

I hope the problem is apparent, because I would need to calculate the length of the branch so that a certain temperature at the sensor is not exceeded.
Thanks a lot!

RE: Heat Flow in a Pipe with integrated Sensor

(OP)
Yes tahts right. But to simplify it I wantet to calculate it with the thermal restistance of the resting oil in the capillary and ignore the convection. Or is my thought to simplified?

RE: Heat Flow in a Pipe with integrated Sensor

Your thoughts are way too simplified, and there is little you can calculate to come even close to an accurate answer. Hot fluids rise causing natural convection, which will help to transfer heat upwards but hinder heat transfer downwards. A simple check valve at the tee location can stop much of this.

RE: Heat Flow in a Pipe with integrated Sensor

(OP)
Okay, I think ig got your point. Do you think it is better (and easier) to simulate the heat transfer using ANSYS instead of calculating it manually?

RE: Heat Flow in a Pipe with integrated Sensor

Free convection coefficient for water is on the order of 10 times that of air, so it's likely that the sensor temperature will be closer to the free stream temperature than not.

TTFN (ta ta for now)
I can do absolutely anything. I'm an expert! https://www.youtube.com/watch?v=BKorP55Aqvg
FAQ731-376: Eng-Tips.com Forum Policies forum1529: Translation Assistance for Engineers Entire Forum list http://www.eng-tips.com/forumlist.cfm

Red Flag This Post

Please let us know here why this post is inappropriate. Reasons such as off-topic, duplicates, flames, illegal, vulgar, or students posting their homework.

Red Flag Submitted

Thank you for helping keep Eng-Tips Forums free from inappropriate posts.
The Eng-Tips staff will check this out and take appropriate action.

Reply To This Thread

Posting in the Eng-Tips forums is a member-only feature.

Click Here to join Eng-Tips and talk with other members! Already a Member? Login


Resources

Low-Volume Rapid Injection Molding With 3D Printed Molds
Learn methods and guidelines for using stereolithography (SLA) 3D printed molds in the injection molding process to lower costs and lead time. Discover how this hybrid manufacturing process enables on-demand mold fabrication to quickly produce small batches of thermoplastic parts. Download Now
Design for Additive Manufacturing (DfAM)
Examine how the principles of DfAM upend many of the long-standing rules around manufacturability - allowing engineers and designers to place a part’s function at the center of their design considerations. Download Now
Taking Control of Engineering Documents
This ebook covers tips for creating and managing workflows, security best practices and protection of intellectual property, Cloud vs. on-premise software solutions, CAD file management, compliance, and more. Download Now

Close Box

Join Eng-Tips® Today!

Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.

Here's Why Members Love Eng-Tips Forums:

Register now while it's still free!

Already a member? Close this window and log in.

Join Us             Close