4340 transmission output shaft
4340 transmission output shaft
(OP)
Hello All,
I am new here and this is my first time posting a thread. I would like some feedback from either expert advise or real world experiences. I have Machined a few aftermarket performance transmission main shafts for a transmission that did not see much attention in aftermarket upgrade industry(would rather not disclose what Transmission they are designed for). So far the two I have made are holding up quite well with zero issues. BUT I feel I can make them easier and or better on the heat treating end of the spectrum. The design portion is limited as it is a direct replacement. The two prototypes I have now running are machined from 4340 annealed steel. All machining and cutting done prior to heat treatment. The shaft is Gas nitrided on the surface with a hardness of 52-56 HRC and a depth of .025" case. Overall after heat treating dimensionally the shafts did not change with this process enough to have to remachine anything. I have two more shafts completed also from 4340 annealed and possibly looking to go another route on heat treatment to better the life of the shaft. I am just not sure if the case depth of the Nitride will stand the test of time. Any opinions or recommendations? I am also looking into Carbo-Austempering, anyone had any experience with this? The less amount of post machining I have to do after heat treatment the better. Below are some numbers I have wrote down so you all know what type of power I am dealing with. Ultimately I am after the maximum torque output combined with the best heat treatment process. Aren't we all?
Engine= 600 ft lbs, 7,000 rpm
Trans= 3:1 ratio, Manual clutch
Speed @ shaft = 2333 rpm
shaft radius = .6875"
shaft length at this given radius = 11" (estimate)
Torque @ shaft = 1800 ft lbs (did not figure in any clutch loss/ slippage)
With these numbers I am getting a shear psi of 42,317. Does this seem accurate?
Thank you everyone!
I am new here and this is my first time posting a thread. I would like some feedback from either expert advise or real world experiences. I have Machined a few aftermarket performance transmission main shafts for a transmission that did not see much attention in aftermarket upgrade industry(would rather not disclose what Transmission they are designed for). So far the two I have made are holding up quite well with zero issues. BUT I feel I can make them easier and or better on the heat treating end of the spectrum. The design portion is limited as it is a direct replacement. The two prototypes I have now running are machined from 4340 annealed steel. All machining and cutting done prior to heat treatment. The shaft is Gas nitrided on the surface with a hardness of 52-56 HRC and a depth of .025" case. Overall after heat treating dimensionally the shafts did not change with this process enough to have to remachine anything. I have two more shafts completed also from 4340 annealed and possibly looking to go another route on heat treatment to better the life of the shaft. I am just not sure if the case depth of the Nitride will stand the test of time. Any opinions or recommendations? I am also looking into Carbo-Austempering, anyone had any experience with this? The less amount of post machining I have to do after heat treatment the better. Below are some numbers I have wrote down so you all know what type of power I am dealing with. Ultimately I am after the maximum torque output combined with the best heat treatment process. Aren't we all?
Engine= 600 ft lbs, 7,000 rpm
Trans= 3:1 ratio, Manual clutch
Speed @ shaft = 2333 rpm
shaft radius = .6875"
shaft length at this given radius = 11" (estimate)
Torque @ shaft = 1800 ft lbs (did not figure in any clutch loss/ slippage)
With these numbers I am getting a shear psi of 42,317. Does this seem accurate?
Thank you everyone!
RE: 4340 transmission output shaft
Chances are the tires won't be able to hold several thousand ft*lbs of axle torque (1800 x some axle ratio), so you're probably off the hook for looking at 1800 ft*lbs taken as a constant load case. But suddenly engaging the clutch will involve an impact factor of some sort, and the wheels and tires represent rotational inertia (resistance to being accelerated rotationally), and such details as splines and shaft thickness transitions will introduce stress intensification effects. That gets into a fatigue evaluation of some projected usage.
Norm
RE: 4340 transmission output shaft
RE: 4340 transmission output shaft
RE: 4340 transmission output shaft
thank you all!
RE: 4340 transmission output shaft
RE: 4340 transmission output shaft
We used to use this alloy, we would quench and then temper at 1050F, then nitride at 1000F for 48 hours.
The results were very reliable and the properties were great.
= = = = = = = = = = = = = = = = = = = =
P.E. Metallurgy
RE: 4340 transmission output shaft
EdStainless, I will look into that material for future shafts as a possibility. The process you did on the N135 is indeed very similar to the process I did on the last shafts. Shaft was quench and tempered back down to mid 30s RC and then gas carburized @ 975F for 48 hours with a surface depth of .025" and hardness of mid 50s RC.
RE: 4340 transmission output shaft
With nitriding you get a two step effect, the near surface (about 0.010") will be 80HRC, and then deeper (at least 0.060") will be about 60HRC. After that it will taper off to the core properties.
I should add that 4130 nitrides fairly well also, just not as high of surface harness as the 135M.
= = = = = = = = = = = = = = = = = = = =
P.E. Metallurgy
RE: 4340 transmission output shaft
Thank you,
RE: 4340 transmission output shaft
RE: 4340 transmission output shaft
If you have any steel over 0.25%C that has been through Q&T you can weld on it with pre-heat and then afterward re-temper it at 25F below you original temp. This won't weaken the parts and it will reduce the stresses. Of course you also have to make sure the parts are clean, use good shield gas (or low hydrogen electrodes), and watch your heat imputs.
= = = = = = = = = = = = = = = = = = = =
P.E. Metallurgy
RE: 4340 transmission output shaft
RE: 4340 transmission output shaft
RE: 4340 transmission output shaft
Nice closeup Pictures of the fracture surface are essential.
RE: 4340 transmission output shaft