Log In

Come Join Us!

Are you an
Engineering professional?
Join Eng-Tips Forums!
  • Talk With Other Members
  • Be Notified Of Responses
    To Your Posts
  • Keyword Search
  • One-Click Access To Your
    Favorite Forums
  • Automated Signatures
    On Your Posts
  • Best Of All, It's Free!
  • Students Click Here

*Eng-Tips's functionality depends on members receiving e-mail. By joining you are opting in to receive e-mail.

Posting Guidelines

Promoting, selling, recruiting, coursework and thesis posting is forbidden.

Students Click Here


NEMA SM-23/SM-24 Turbine Nozzle Limits Incorrect, Invalid, Outdated. How to Update the "Standard"?

NEMA SM-23/SM-24 Turbine Nozzle Limits Incorrect, Invalid, Outdated. How to Update the "Standard"?

NEMA SM-23/SM-24 Turbine Nozzle Limits Incorrect, Invalid, Outdated. How to Update the "Standard"?

Vendor (a competitor) is quoting NEMA SM 23 limits on their new turbine nozzles to replace a unit that crashed a few weeks ago. As you would expect, those very restrictive turbine nozzle forces and moments are causing extreme cost and material increases in the replacement steam piping, pipe snubbers and restraints, and the new steel holding those new restraints and supports.

NEMA SM 23 (Mechanical Drive Turbine Specifications) is no longer maintained by NEMA; worse, NEMA 23 is not strictly relevant to steam turbine limitations for generator turbines. (NEMA SM 24-1991 is the right spec for generator turbines.) Reading both NEMA standards, it is obvious both SM 23 and SM 24 merely maintain the original 1950-1960 era limits of NEMA 21-22. (NEMA 23 Section 8.4.6 is word-by-word duplicated in NEMA 24. The sample problems are also copied from 23 to 24.))

Are there any other standards appropriate?

It appears that NEMA 23/24 are the most basic, most restrictive documents "in use" although neither is maintained by the NEMA, neither is theoretically nor practically appropriate, and neither offers a realistic evaluation of the actual force and moments on either individual nozzles nor the turbine casing as a whole.

Per NEMA 23/24, maximum allowed forces and moment on each individual nozzle are directly proportional to nozzle dia if less than 8 inches, and increase by 1/3 dia if dia is greater than 8 inches.
D_eq = (16 + Dia)/3
If Dia = 6, D_eq = 6.00
If Dia = 8, D_eq = 8.00
If Dia = 10, D_eq = 8.66
If Dia = 16, D_eq = 10.66
If Dia = 20, D_eq = 12.00 etc.

On each nozzle, maximum forces and moments are: 3*Fr + Mr < 500*D_eq (Section 8.4.6, Limit 1) for Fr in lbf and M in Ft-lbf.
Problem 1: The calculation uses inconsistent units (unless "3 ft" is assumed an arbitrary nozzle length for some reason).
Problem 2: The NEMA limit cannot be translated to metric units.

Problem 3. Incorrect calculation.
But even these assumptions are physically wrong: stiffness and strength of a nozzle is not linearly proportional Dia, much less Dia/3 just because the nozzle is larger than 8 inches. Turbine casing movement (and distortion is the most important restriction on a nozzle load on the casing) is not proportional to arbitrary nozzle face forces and moments calculated this way on real turbines. Even in the slide rule era, turbine distortion was known to be proportional to nozzle lever arm; nozzle position on the casing; nozzle diameter; nozzle wall thickness and nozzle pad reinforcement; turbine casing thickness, dia, length, and axial position.
Peng & Peng (Pipe Stress Design) shows measured turbine deflection strength is actually proportional to nozzle dia^2.

Even after all of these (flat-out errors) inconsistancies, the NEMA 23/24 Limits 2 totals all forces and moments from all nozzles together, then compares the total nozzle forces and moments to a single mythical Dc (proportional to the area of all nozzles added together.
Thus 2*Fc + Mc < 250*Dc (Section, Limit 2)
where Dc = sqrt((sum of all nozzle areas)/4*pi)

NEMA 23/24 Limit 3 is more arbitrary:

Fx < 50*Dc (Section, Limit 3)
Fy < 125*Dc
Fz < 100*Dc
Mx < 250*Dc
My < 125*Dc
Mz < 125*Dc
where Fx is the sum of all axial nozzle forces,
Fy is the sum of all vertical nozzle forces,
Fz is the sum of all horizontal nozzle forces,
and Mx, My, and Mz are the sum of all of the nozzle moments.
(Yes, units are inconsistent; and no, the requirement cannot be translated to metric units.)


Now that the industry has replaced slide rules with spreadsheets, and replaced 2-D spreadsheets with 3D finite element analysis, and now that we (collectively) must buy and sell internationally in international units, how does the turbine industry get rid of these demonstrably wrong 1950-1960 NEMA nozzle force and moment limits?

Or, at least update them to a rational criteria?

Red Flag This Post

Please let us know here why this post is inappropriate. Reasons such as off-topic, duplicates, flames, illegal, vulgar, or students posting their homework.

Red Flag Submitted

Thank you for helping keep Eng-Tips Forums free from inappropriate posts.
The Eng-Tips staff will check this out and take appropriate action.

Reply To This Thread

Posting in the Eng-Tips forums is a member-only feature.

Click Here to join Eng-Tips and talk with other members! Already a Member? Login


White Paper - The Criticality of the E/E Architecture
Modern vehicles are highly sophisticated systems incorporating electrical, electronic, software and mechanical components. Mechanical systems are giving way to advanced software and electronic devices, driving automakers to innovate and differentiate their vehicles via the electric and electronic (E/E) architecture. As the pace of change accelerates, automotive companies need to evolve their development processes to deliver and maximize the value of these architectures. Download Now
White Paper - Model Based Engineering for Wire Harness Manufacturing
Modern cars, trucks, and other vehicles feature an ever-increasing number of sophisticated electrical and electronic features, placing a larger burden on the wiring harness that enables these new features. As complexity rises, current harness manufacturing methods are struggling to keep pace due to manual data exchanges and the inability to capture tribal knowledge. A model-based wire harness manufacturing engineering flow automates data exchange and captures tribal knowledge through design rules to help harness manufacturers improve harness quality and boost efficiency. Download Now
White Paper - Modeling and Optimizing Wire Harness Costs for Variation Complexity
This paper will focus on the quantification of the complexity related costs in harness variations in order to model them, allowing automated algorithms to optimize for these costs. A number of real world examples will be provided as well. Since no two businesses are alike, it is the aim of this paper to provide the foundational knowledge and methodology so the reader can assess their own business to model how variation complexity costs affect their business. Download Now

Close Box

Join Eng-Tips® Today!

Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.

Here's Why Members Love Eng-Tips Forums:

Register now while it's still free!

Already a member? Close this window and log in.

Join Us             Close