Log In

Come Join Us!

Are you an
Engineering professional?
Join Eng-Tips Forums!
  • Talk With Other Members
  • Be Notified Of Responses
    To Your Posts
  • Keyword Search
  • One-Click Access To Your
    Favorite Forums
  • Automated Signatures
    On Your Posts
  • Best Of All, It's Free!

*Eng-Tips's functionality depends on members receiving e-mail. By joining you are opting in to receive e-mail.

Posting Guidelines

Promoting, selling, recruiting, coursework and thesis posting is forbidden.

Students Click Here

Coulomb Passive pressure on soldier pile walls.

Coulomb Passive pressure on soldier pile walls.

Coulomb Passive pressure on soldier pile walls.

I've recently designed some soldier pile/ concrete sleeper retaining walls using Brom's method.

Using Coulombs equation for passive pressure and allowing for a wall friction angle of 0.5*Phi gives a much higher kp value than Rankine's.
Based on a previous topic Here
I gathered allowing for wall friction is okay as long as it is done in moderation.

Using above method gives a kp of around 4.2 for a phi = 30. These parameters give a pier depth of around 2.1m for a wall height of 2.0m with 1.6m pier spacing.
I was hoping to get some advice on the depth of the footing from those experienced in soldier pile walls.

Any advice/ recommended resources is greatly appreciated.

RE: Coulomb Passive pressure on soldier pile walls.

I got a Kp of 9 (didn't account for wall friction). If the piles are spaced more than 3d, you get to use a value of Cp=phi/10 (approximation). Cp accounts for arching in that the horizontal load is not plane strain. Refer to Brinch-Hanson.


ípapß gordo ainÆt no madre flaca!

RE: Coulomb Passive pressure on soldier pile walls.

Rule of thumb used on many thousands of wall designs: Unless the soldier beams are toed into very competent bedrock (not hard gravel), it is good practice to have at least 5' embedment for braced or anchored, non-gravity, retaining walls and at least as much embedment as the exposed wall height for cantilevered walls, despite what the calcs may say.


RE: Coulomb Passive pressure on soldier pile walls.

I have done a lot of soldier pile design, anchored and cantilevered. For cantilevered walls the calculated embedment depth is usually between 90% and 110% of the exposed wall height, in really poor soils it can be as high as 130%. For supported piles a rule of thumb is much harder, as the required embedment will depend on the number of supports and how low the bottom support is. For walls with 1 support, embedment should be around 50% of wall height. With 2 supports 30% of wall height, and with more supports 20-25% of wall height. If my calculations/output are giving me results that vary a lot from these percentages I would look to see why.

RE: Coulomb Passive pressure on soldier pile walls.

Very useful posts !

RE: Coulomb Passive pressure on soldier pile walls.

Hi All; sorry for the late reply to this. Notifications for it were diverted to spam automatically. So I did not realise.
To quickly respond;

Does Cp just stand for arching in pile?
I do allow for this but I use 0.08*phi and limit it to 3. I dont normally apply arching to kp though, rather as an effective width when balancing moments

these sizes are pretty inline with what I get. Generally the only time I start to get very small footings in in soils with large friction angles (35-40)
Which may be because Brom's theory is not appropriate for design on in rock.

Cheers guys

Red Flag This Post

Please let us know here why this post is inappropriate. Reasons such as off-topic, duplicates, flames, illegal, vulgar, or students posting their homework.

Red Flag Submitted

Thank you for helping keep Eng-Tips Forums free from inappropriate posts.
The Eng-Tips staff will check this out and take appropriate action.

Reply To This Thread

Posting in the Eng-Tips forums is a member-only feature.

Click Here to join Eng-Tips and talk with other members! Already a Member? Login


eBook - Functional Prototyping Using Metal 3D Printing
Functional prototypes are a key step in product development – they give engineers a chance to test new ideas and designs while also revealing how the product will stand up to real-world use. And when it comes to functional prototypes, 3D printing is rewriting the rules of what’s possible. Download Now

Close Box

Join Eng-Tips® Today!

Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.

Here's Why Members Love Eng-Tips Forums:

Register now while it's still free!

Already a member? Close this window and log in.

Join Us             Close