Measuring moment of inertia
Measuring moment of inertia
(OP)
I would like to measure the moment of inertia of an axial fan. Can anyone tell me a method for doing this?
INTELLIGENT WORK FORUMS
FOR ENGINEERING PROFESSIONALS Come Join Us!Are you an
Engineering professional? Join EngTips Forums!
*EngTips's functionality depends on members receiving email. By joining you are opting in to receive email. Posting Guidelines 

Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.
Here's Why Members Love EngTips Forums:
Register now while it's still free!
Already a member? Close this window and log in.
RE: Measuring moment of inertia
You can do that by mesuring the electrical absorbed power from the fan motor which is equal P = I x V
where I : current (A)
V: Voltage (V)
Theoritacly most of this power converted to mechanical power which is P = 1/2 x I" x w^2
Where I" : moment of inertia ( requested )
w : rotational speed ( rad \ s)
equate both equarions you can find I"
Good luck
RE: Measuring moment of inertia
Suspend the fan with the center shaft oriented vertically using two parallel wires. You may have to make an attachment fixture, but if you keep it's geometry simple, it's added inertia can be calc. and subtracted out in the end. The wires should be attached equally spaced from the centerline of the fan. The ratio of length of the wire(L) to the distance between the wires (D) should be about 10.
Once setup, rotote the fan a small amount from equilibrium and release. After release, measure the frequency of oscillation. The moment of inertia can then be calc. using the following:
I = c*m*D^2/(L*f^2)
I = moment of Inertia about the rotation axis
m = fan weight
D = distance between wires
L = Length of wire
f = measured frequency in HZ
c = conversion factor depending on units used
If Inertia is in kgm^2, with 'm' in kg and "L" & "D" in meters, the c = 6.2e2
If Inertia is in lbft^2, with 'm' in lb and "L" & "D" in feet, the c = 2.04e1
If Inertia is in lbinsec^2, with 'm' in lb and "L" & "D" in inches, the c = 7.61e2
If desired, don't forget to subtract out the inertia effect of any attachemnt fixture. The procedure works well for motor rotors. I think if you keep the amount of rotation low so it doesn't spin to fast such that the drag forces of the fan blades is not to high, it should give a good value.
Good Luck.
RE: Measuring moment of inertia
If you can run this fan in a vacuum and measure the current draw to get up to running rpm, then you can use the mathematical relationship between
the change delta I (amps) and delta rad/sec to obtain I (moment of inertia)
Hope this helps.
You might try contacting the fan manufacturer who might already have this information.
Don
RE: Measuring moment of inertia
good luck,
RE: Measuring moment of inertia
If the fan can be repositioned to the center of the axle, try this...
Orient twohorizontal edges (creating a channel) to support the ends of the shaft with the fan suspended into the channel (from the side, it kindof looks like a table saw).
Attach and wrap string around the axle then attach a known mass to the string (preferably hung by parallel strings spanning the fan blades).
When you let the mass (weight) hang freely, the weight will rotationally and translationally accelerate the system.
Torque = I * alpha (the rotational acceleration)
Force = mass * a (linear acceleration), include the hanging weight's translation
a and alpha are related.
and solve for I
Alternately...
The mass falling a given distance and now moving horizontally with a velocity, was caused by the work of the mass being lowered.
weight * distance fallen (potential energy)= the SUM (of the rotational and translational kinetic energies)
If all else fails try attaching a tinfoil shroud over the fan blades, looking at it axially it kindof looks like a minature bicycle wheel covered with tinfoil, then use the electrical current method previously proposed.
As a last resort...
If you can catch the next Space Shuttle, you might give the fan (freely held in your hands) an axial spin (and release it), then, have an observer measure the rotational velocity of the fan and the rotational velocity of your body. Then you simply backcalculate the moment of inertia of the fan, through a simple relationship, incorporating your body's moment of inertia, but that my friends will have to be another topic of discussion.
Well gotta go,
pi