Sorry about the delay Aorangi
What Greg says is essentially correct, but along with other issues.
The combustion chamber concentrated around the exhaust valve along with the slight bowl in the piston lead to a high suface to volume ratio chamber.
This leads to a relatively poor BSAC (break specific air consumtion) value- this is a measure of how an engine burns for a given air flow. This didn’t matter too much for the engines over here that ran a 12.5:1 CR ( I forget what these engines ran Federally)- as the high CR goes some way to compensate by getting more BMEP for a given airflow.
Now poor BSAC is quite common in very oversquare engines even today-but these engines usually have large valve area per cylinder size, good flowing ports and are usually pent roof these days. So what they don’t have in terms of BSAC efficiency they make up for by having good Volumetric efficiency (air flow).
The May head doesn’t have this luxury, It was a two valver for starters, and had these essentially parallel positioned valves fairly small ( compared to a hemi, say) where the ports were optimised to induce chamber charge motion (axial swirl if memory serves). This meant the ports didn’t flow as well for outright flow performance for an already relatively small valve. This isn’t a problem on a “lazy cubes” low specific output type engine. But when Specific output became a priority- like on our V8 , valve area also became a priority.
Then as emissions laws got very stringent, world wide, and fuel octane ratings tumbled compression ratios had to be lowered.
I believe the Euro spec 6.0 litre last of the line V12s (that ran Zytek engine management) were running on 10:1 CR- but don’t quote me on that! The CR had to be dropped for fuel octane AND Nox regs now.
Again the V12 chamber was an odd beast in that it resisted knock fairly well compared to it’s 2 valve contemporaries, but had SLOW 10-90 burn rates. Even so the early 5.3 litre 12.5 CR engines WERE knock limited at full load- and the main benefit of the high CR was clearly at part load. The slow 10-90’s didn’t bode well for the stringent modern emissions laws. More to point, with the poor BSAC and without the high CR the benefits of the chamber were looking marginal.
Add to that that modern conventional catalyst cars can’t run lean at part load, something the V12 was designed to do from the outset .
The V12 along with the staright six (which ran along the same lines)were made at Radford, a plant that it was decided to close so this also had a bearing on things.
The high specific horsepower requirement for the new XJ/XK series engines sealed the V12s fate.
It saddens me when I drive one of these beasts, and am in awe of their phenomenal refinement!
The V12 is a very cheap engine to het hold of second hand an a few of us have played with the idea of whether it would be possible to use the straight six 24 valve heads from the AJ6/AJ16 for cheap after market power!
They have the same bore centres. The other head could be flipped around, and a cam chain drive would have to be implemented on the other end of the head. However, the bore sizes themselves are slightly different and the V12 is wet linered and has studs in the block which the head nuts down onto. In contrast the staight six Jag engine had head bolts that ran through the cam caps and I wouldn’t be surprised if the bolting/fastening position was different.
Oh well, was a good idea I thought!