dloganbill
Mechanical
- Jan 28, 2022
- 2
Hi everyone,
I've been working through a design problem and am hoping that someone here can validate the workflow I'm using is correct. I've got some reasonable results, but an error could result in an expensive mistake I'd like to avoid.
We are designing a 120' diameter x 21' tall tank full of unmixed water that needs to be maintained at 100F. An internal heating loop will be installed around the interior perimeter, ~6" away from the wall. Heat will be supplied by 130F hot water supply.
What is the correct approach for calculating the length of pipe required to transfer a desired heat load? I'd like to compare the thermal performance of different pipe materials and thicknesses so I am calculating the overall heat transfer coefficient. I'm mostly curious to find out if I'm accounting for forced/free convection correctly.
Thanks in advance for your advice.
I've been working through a design problem and am hoping that someone here can validate the workflow I'm using is correct. I've got some reasonable results, but an error could result in an expensive mistake I'd like to avoid.
We are designing a 120' diameter x 21' tall tank full of unmixed water that needs to be maintained at 100F. An internal heating loop will be installed around the interior perimeter, ~6" away from the wall. Heat will be supplied by 130F hot water supply.
What is the correct approach for calculating the length of pipe required to transfer a desired heat load? I'd like to compare the thermal performance of different pipe materials and thicknesses so I am calculating the overall heat transfer coefficient. I'm mostly curious to find out if I'm accounting for forced/free convection correctly.
Thanks in advance for your advice.