rayshaumik
Materials
- Aug 26, 2007
- 1
n0 = 1;
n1 = 2.52;
n2 = 1.9;
n3 = 2.11;
n4 = 2.39;
n5 = 2.46;
lamda = 330*(10^-3);
pi = 3.14;
p = (n0)/(n2);
q = n0;
r = 1/(n2);
loop = 3;
tsap = 430;
taln = 900;
talgan1 = 107;
talgan2 = 128;
talgant = 583;
nrows = tsap + taln + (talgan1 + talgan2)*loop + talgant;
R = zeros(1,nrows);
for t0 = 1:1:tsap; % for saphhire
Gr0 = 0;
Ph0 = (2*(pi)*2*(n0)*(Gr0)*(t0))/lamda;
X = [cos((Ph0)/2) (j/n0)*sin((Ph0)/2); (j*n0)*sin((Ph0)/2) cos((Ph0)/2)];
Ro0 = ((p)*(X(1,1))+(q)*(X(1,2))-(r)*(X(2,1))-(X(2,2)));
Ao0 = ((p)*(X(1,1))+(q)*(X(1,2))+(r)*(X(2,1))+(X(2,2)));
Re0 = (Ro0)./(Ao0);
Rc0 = conj(Re0);
R(t0) = ((Re0).*(Rc0))*100;
tl = t0;
end
for t1 = 1:1:taln; % for AlN
Gr1 = 0.0003;
t0 = tl + t1;
Ph1 = (2*(pi)*2*(n3)*(Gr1)*(t1))/lamda;
Y = [cos((Ph1)/2) (j/n3)*sin((Ph1)/2); (j*n3)*sin((Ph1)/2) cos((Ph1)/2)];
Ro1 = ((p)*(Y(1,1))+(q)*(Y(1,2))-(r)*(Y(2,1))-(Y(2,2)));
Ao1 = ((p)*(Y(1,1))+(q)*(Y(1,2))+(r)*(Y(2,1))+(Y(2,2)));
Re1 = (Ro1)./(Ao1);
Rc1 = conj(Re1);
R(t0) = ((Re1).*(Rc1))*100;
end
tl = tl + t1;
for k = 1:1:loop;
for t2 = 1:1:talgan1; % for 20% AlGaN
t0 = tl + (k-1)*(talgan1 + talgan2)+t2;
Gr2 = 0.0003;
Ph2 = (2*(pi)*2*(n1)*(Gr2)*(t2))/lamda;
Z = [cos((Ph2)/2) (j/n1)*sin((Ph2)/2); (j*n1)*sin((Ph2)/2) cos((Ph2)/2)];
if k == 1
M = (Y)*(Z);
elseif (k > 1 && k<= 20)
M = (M1)*(Z);
end
Ro2 = ((p)*(M(1,1))+(q)*(M(1,2))-(r)*(M(2,1))-(M(2,2)));
Ao2 = ((p)*(M(1,1))+(q)*(M(1,2))+(r)*(M(2,1))+(M(2,2)));
Re2 = (Ro2)./(Ao2);
Rc2 = conj(Re2);
R(t0) = ((Re2).*(Rc2))*100;
end
for t3 = 1:1:talgan2; % for 70% AlGaN
t0 = tl + k * talgan1 + (k-1) * talgan2 + t3;
Gr3 = 0.0003;
Ph3 = (2*(pi)*2*(n4)*(Gr3)*(t3))/lamda;
W = [cos((Ph3)/2) (j/n4)*sin((Ph3)/2); (j*n4)*sin((Ph3)/2) cos((Ph3)/2)];
M1 = (W)*(M);
Ro3 = ((p)*(M1(1,1))+(q)*(M1(1,2))-(r)*(M1(2,1))-(M1(2,2)));
Ao3 = ((p)*(M1(1,1))+(q)*(M1(1,2))+(r)*(M1(2,1))+(M1(2,2)));
Re3 = (Ro3)./(Ao3);
Rc3 = conj(Re3);
R(t0) = ((Re3).*(Rc3))*100;
end
end
tl = tl + loop * (talgan1 + talgan2);
for t4 = 1:1:talgant; % for 15% AlGaN
t0 = tl + t4;
Gr4 = 0.0003;
Ph4 = (2*(pi)*2*(n5)*(Gr4)*(t4))/lamda;
V = [cos((Ph4)/2) (j/n5)*sin((Ph4)/2); (j*n5)*sin((Ph4)/2) cos((Ph4)/2)];
M2 = (V)*(M1);
Ro4 = ((p)*(M2(1,1))+(q)*(M2(1,2))-(r)*(M2(2,1))-(M2(2,2)));
Ao4 = ((p)*(M2(1,1))+(q)*(M2(1,2))+(r)*(M2(2,1))+(M2(2,2)));
Re4 = (Ro4)./(Ao4);
Rc4 = conj(Re4);
R(t0) = ((Re4).*(Rc4))*100;
end
plot(R);
grid on; xlabel('Time (s)'); ylabel('Reflectivity (%)');
I am trying to model a Bragg Reflector with Sapphire Substrate and AlGaN with varying Al molar fractions at growth temp and 330 nm wavelength.
Is the graph characteristics for the loop that includes the 20 iterations right
n1 = 2.52;
n2 = 1.9;
n3 = 2.11;
n4 = 2.39;
n5 = 2.46;
lamda = 330*(10^-3);
pi = 3.14;
p = (n0)/(n2);
q = n0;
r = 1/(n2);
loop = 3;
tsap = 430;
taln = 900;
talgan1 = 107;
talgan2 = 128;
talgant = 583;
nrows = tsap + taln + (talgan1 + talgan2)*loop + talgant;
R = zeros(1,nrows);
for t0 = 1:1:tsap; % for saphhire
Gr0 = 0;
Ph0 = (2*(pi)*2*(n0)*(Gr0)*(t0))/lamda;
X = [cos((Ph0)/2) (j/n0)*sin((Ph0)/2); (j*n0)*sin((Ph0)/2) cos((Ph0)/2)];
Ro0 = ((p)*(X(1,1))+(q)*(X(1,2))-(r)*(X(2,1))-(X(2,2)));
Ao0 = ((p)*(X(1,1))+(q)*(X(1,2))+(r)*(X(2,1))+(X(2,2)));
Re0 = (Ro0)./(Ao0);
Rc0 = conj(Re0);
R(t0) = ((Re0).*(Rc0))*100;
tl = t0;
end
for t1 = 1:1:taln; % for AlN
Gr1 = 0.0003;
t0 = tl + t1;
Ph1 = (2*(pi)*2*(n3)*(Gr1)*(t1))/lamda;
Y = [cos((Ph1)/2) (j/n3)*sin((Ph1)/2); (j*n3)*sin((Ph1)/2) cos((Ph1)/2)];
Ro1 = ((p)*(Y(1,1))+(q)*(Y(1,2))-(r)*(Y(2,1))-(Y(2,2)));
Ao1 = ((p)*(Y(1,1))+(q)*(Y(1,2))+(r)*(Y(2,1))+(Y(2,2)));
Re1 = (Ro1)./(Ao1);
Rc1 = conj(Re1);
R(t0) = ((Re1).*(Rc1))*100;
end
tl = tl + t1;
for k = 1:1:loop;
for t2 = 1:1:talgan1; % for 20% AlGaN
t0 = tl + (k-1)*(talgan1 + talgan2)+t2;
Gr2 = 0.0003;
Ph2 = (2*(pi)*2*(n1)*(Gr2)*(t2))/lamda;
Z = [cos((Ph2)/2) (j/n1)*sin((Ph2)/2); (j*n1)*sin((Ph2)/2) cos((Ph2)/2)];
if k == 1
M = (Y)*(Z);
elseif (k > 1 && k<= 20)
M = (M1)*(Z);
end
Ro2 = ((p)*(M(1,1))+(q)*(M(1,2))-(r)*(M(2,1))-(M(2,2)));
Ao2 = ((p)*(M(1,1))+(q)*(M(1,2))+(r)*(M(2,1))+(M(2,2)));
Re2 = (Ro2)./(Ao2);
Rc2 = conj(Re2);
R(t0) = ((Re2).*(Rc2))*100;
end
for t3 = 1:1:talgan2; % for 70% AlGaN
t0 = tl + k * talgan1 + (k-1) * talgan2 + t3;
Gr3 = 0.0003;
Ph3 = (2*(pi)*2*(n4)*(Gr3)*(t3))/lamda;
W = [cos((Ph3)/2) (j/n4)*sin((Ph3)/2); (j*n4)*sin((Ph3)/2) cos((Ph3)/2)];
M1 = (W)*(M);
Ro3 = ((p)*(M1(1,1))+(q)*(M1(1,2))-(r)*(M1(2,1))-(M1(2,2)));
Ao3 = ((p)*(M1(1,1))+(q)*(M1(1,2))+(r)*(M1(2,1))+(M1(2,2)));
Re3 = (Ro3)./(Ao3);
Rc3 = conj(Re3);
R(t0) = ((Re3).*(Rc3))*100;
end
end
tl = tl + loop * (talgan1 + talgan2);
for t4 = 1:1:talgant; % for 15% AlGaN
t0 = tl + t4;
Gr4 = 0.0003;
Ph4 = (2*(pi)*2*(n5)*(Gr4)*(t4))/lamda;
V = [cos((Ph4)/2) (j/n5)*sin((Ph4)/2); (j*n5)*sin((Ph4)/2) cos((Ph4)/2)];
M2 = (V)*(M1);
Ro4 = ((p)*(M2(1,1))+(q)*(M2(1,2))-(r)*(M2(2,1))-(M2(2,2)));
Ao4 = ((p)*(M2(1,1))+(q)*(M2(1,2))+(r)*(M2(2,1))+(M2(2,2)));
Re4 = (Ro4)./(Ao4);
Rc4 = conj(Re4);
R(t0) = ((Re4).*(Rc4))*100;
end
plot(R);
grid on; xlabel('Time (s)'); ylabel('Reflectivity (%)');
I am trying to model a Bragg Reflector with Sapphire Substrate and AlGaN with varying Al molar fractions at growth temp and 330 nm wavelength.
Is the graph characteristics for the loop that includes the 20 iterations right