Suggestion: Visit
for: Analytical Derivation of a Coupled-Circuit Model of a Claw-Pole Alternator with Concentrated Stator Winding
Bai, H.; Pekarek, S.; Techenor, J.; Eversman, W.; Buening D.; Holbrook, G.; Hull, M.; Krefta, R.; Shields, S.;
Author Affiliation: University of Missouri-Rolla, Rolla, MO; Delphi Automotive Systems
Abstract: A lumped-parameter coupled-circuit model of a claw-pole alternator is derived. To derive the model, analytical techniques are used to define a three-dimensional Fourier-series representation of the airgap flux density. Included in the series expansion are the harmonics introduced by rotor saliency, concentrated stator windings, and stator slots. From the alrgap flux density waveform, relatively simple closed-form expressions for the stator and rotor self- and mutual-inductances are obtained. The coupled-circuit model is implemented in the simulation of an alternator/rectifier system using a commercial state-model-based circuit analysis program. Comparisons with experimental results demonstrate the accuracy of the model in predicting both the steady-state and transient behavior of the machine.
Preprint Order Number: PE-187EC (09-2001)
Discussion Deadline: February 2002