Perhaps I am reading this a little bit different. Even if you don't want to force a flow across the throat bushing to lubricate it, you are going to get flow across that bushing if there is a differential pressure across it. That flow needs to be accounted for or you may not build the pressure margin that you want. These are my assumptions:
1. With no flow in or out, the seal chamber pressure is close to suction. This suggests a closed impeller with balance holes and back wear rings.
2. You want to build some differential pressure in the seal chamber above normal stuffing box pressure to suppress flashing between the seal faces.
3. There is a throat bushing in the bottom of the seal chamber to allow the increase in pressure.
I would work the problem this way: I would select a seal chamber pressure target to achieve the desired vapor pressure margin in the stuffing box. I would size the plan 11 orifice to deliver the target flow rate at the known discharge pressure and target seal chamber pressure. I would use the seal chamber pressure across the known throat bushing geometry to estimate the flow across that bushing. I would take the difference between the incoming flow from the Plan 11 and the bushing flow to use as the Plan 13 flow. I would size the orifice in the Plan 13 line to achieve that flow with the target seal chamber pressure and the known suction pressure.
A typical example in my plant might look like this for Naphtha service:
Suction Pressure – 5 psig
Vapor Pressure – 15 psia
Discharge Pressure – 100 psig
Seal Chamber Pressure w/no flow – 10 psig
Desired Vapor Pressure Margin – 30 psid
Desired Flush Flow Rate – 3 gpm
So, in order to get a 30 psid vapor pressure margin, I need to develop a seal chamber pressure of about 31 psig (15 psia – 14 psig (atmosphere) + 30 psid). The Plan 11 orifice would need to be sized to about 0.118” to provide 3 gpm with a 69 psi differential The leakage across the throat bushing would be about 1.8 gpm for a 2 inch bushing with 0.008” clearance and 21 psi differential. The Plan 13 orifice would need to be sized to about 0.093 to pass the remaining 1.2 gpm. If there is concern with plugging off the plan 13 orifice, then you could work the problem in reverse. With a 26 psi pressure drop across the plan 13 orifice, at a minimum 0.125” diameter, it should pass about 2.1 gpm. The throat bushing flow is still the same at 1.8 gpm. So, the Plan 11 orifice needs to pass 3.9 gpm. This requires increasing the Plan 11 orifice to about 0.136”.
Obviously, I didn’t give you enough details to reproduce my results. But, I hope I got the point across. It can become an iterative process until you get a flow rate, seal chamber pressure and orifice size that you are comfortable with.
If the pump was a vertical turbine with full discharge pressure on the seal chamber, then the flow across the throat bushing would add to the Plan 11 flow rather than subtracting from it. And the outgoing Plan 13 flow would need to be increased to pass this additional amount.
Please let me know if I messed up my assumptions or missed something.
Johnny Pellin