Log In

Come Join Us!

Are you an
Engineering professional?
Join Eng-Tips Forums!
  • Talk With Other Members
  • Be Notified Of Responses
    To Your Posts
  • Keyword Search
  • One-Click Access To Your
    Favorite Forums
  • Automated Signatures
    On Your Posts
  • Best Of All, It's Free!

*Eng-Tips's functionality depends on members receiving e-mail. By joining you are opting in to receive e-mail.

Posting Guidelines

Promoting, selling, recruiting, coursework and thesis posting is forbidden.

Students Click Here

Welding, Bonding & Fastener engineering FAQ

Fastening calculations

How do I calculate an assembly torque? by CoryPad
Posted: 27 Feb 03 (Edited 6 Aug 03)

The following assumes a metric thread form according to ISO 68-1 ISO general purpose screw threads -- Basic profile -- Part 1: Metric screw threads  and  ISO 724 ISO general-purpose metric screw threads -- Basic dimensions.  Also, it is assumed that all assembly torque is used to overcome friction and develop joint preload, so the joint members must be elastic and there must not be any prevailing torque.

MA = FM (0.16 · P + 0.58 · d2 · μG + μK · DKm/2)


MA is the assembly torque in N m
FM is the preload in kN
P is the pitch in mm
d2 is the pitch diameter in mm
μG is the thread friction coefficient
μK is the bearing friction coefficient
DKm = (dw +dh)/2
dw is the bearing surface outer diameter in mm
dh is the hole diameter in mm

The target preload FM usually is chosen as a certain percentage of the screw yield stress.

FM = ν · σM · A0


ν is the percentage of yield stress chosen (90% is standard)
σM is stress due to combined tension and torsion
A0 is the relevant shank cross-sectional area (Full, reduced, or threaded shank)

σM = Rp0.2 / [1 + 3(3/2 · d2/d0 · {P/(π · d2) + 1.115 μG})2]0.5


Rp0.2 is the screw yield stress
d0 is the diameter corresponding to A0
π = 3.141 592 654

Back to Welding, Bonding & Fastener engineering FAQ Index
Back to Welding, Bonding & Fastener engineering Forum

My Archive


Low-Volume Rapid Injection Molding With 3D Printed Molds
Learn methods and guidelines for using stereolithography (SLA) 3D printed molds in the injection molding process to lower costs and lead time. Discover how this hybrid manufacturing process enables on-demand mold fabrication to quickly produce small batches of thermoplastic parts. Download Now
Design for Additive Manufacturing (DfAM)
Examine how the principles of DfAM upend many of the long-standing rules around manufacturability - allowing engineers and designers to place a part’s function at the center of their design considerations. Download Now
Taking Control of Engineering Documents
This ebook covers tips for creating and managing workflows, security best practices and protection of intellectual property, Cloud vs. on-premise software solutions, CAD file management, compliance, and more. Download Now

Close Box

Join Eng-Tips® Today!

Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.

Here's Why Members Love Eng-Tips Forums:

Register now while it's still free!

Already a member? Close this window and log in.

Join Us             Close