INTELLIGENT WORK FORUMS FOR ENGINEERING PROFESSIONALS
Log In
Come Join Us!
Are you an Engineering professional? Join EngTips Forums!
 Talk With Other Members
 Be Notified Of Responses
To Your Posts
 Keyword Search
 OneClick Access To Your
Favorite Forums
 Automated Signatures
On Your Posts
 Best Of All, It's Free!
 Students Click Here
*EngTips's functionality depends on members receiving email. By joining you are opting in to receive email.
Posting Guidelines
Promoting, selling, recruiting, coursework and thesis posting is forbidden. Students Click Here

Metal and Metallurgy engineering FAQ
Fracture Mechanics
What is Fracture Mechanics? by Maui
Posted: 28 May 11 (Edited 24 Aug 11)

Plastic deformation occurs by a process of shear. For most engineering materials, the actual shear strengths are much lower than the theoretically predicted values. This occurs because defects in the crystalline structure called dislocations begin to move when the resolved shear stress exceeds a certain value. If a similar calculation is performed to determine the critical tensile stress Sc required to separate adjacent atomic planes by breaking the atomic bonds we find
Sc = E/2pi
where pi=3.1415... For a steel alloy where the elastic modulus is usually 30x10^6 psi, this amounts to a critical tensile stress of 4.8x10^6 psi. The actual measured fracture strengths of steel alloy specimens are several orders of magnitude lower than this. Defects in the material cause fracture to occur at applied stress levels that are far below the theoretical values. Examples of such defects are nonmetallic inclusions, voids, sharp cracks and notches. One of the theories used to model the impact that these defects have on the load carrying capacity of materials is called Linear Elastic Fracture Mechanics (LEFM).
Consider a perfectly elastic material, such as glass or a ceramic, which contains a sharp crack. The crack grows when the atomic bonds at the crack tip are broken. Work must be done to break these bonds and separate the adjacent atomic planes. The total surface energy required to form a crack of length 2a is
Ws = 4aYs
where 4a is the total surface area of the crack per unit thickness and Ys is the surface energy of the material. As the crack grows, more surface area is created and so more work is done by the applied forces. The total energy per unit thickness required to produce a crack of length 2a under an applied tensile stress S is
Wtotal = 4aYs  pi(S^2)(a^2)/E
The condition for crack growth is obtained by taking the derivative of Wtotal with respect to crack length and setting the resulting expression equal to zero. We find dWtotal/da = 0
4Ys  2pi(S^2)a/E = 0 S = [2EYs/pi*a]^0.5 or S(pi*a)^0.5 = (2EYs)^0.5
As the length of a preexisting crack increases, the stress required for fracture decreases. This equation is known as the Griffith criterion for fracture. It often appears in the form
S = (EGc/pi*a)^0.5 or S(pi*a)^0.5 = (EGc)^0.5
where Gc is called the critical strain energy release rate, or the total work of fracture. This equation can be used to predict the critical values of stress and crack length that are required for a crack to grow in a material. When the term S(pi*a)^0.5 reaches the critical value (EGc)^0.5, the crack will begin to grow. In this context, it is convenient to treat S(pi*a)^0.5 as a measure of the driving force for crack propagation. It is common practice to define
K = S(pi*a)^0.5
as the stress intensity factor. Fracture occurs when the stress intensity factor K equals or exceeds the critical stress intensity factor KIC where
KIC = (EGc)^0.5
KIC is usually referred to as the fracture toughness, and values for this material property are usually only well defined under plane strain conditions. There is also a rather complicated geometry factor that comes into play in performing this type of analysis, but for convenience it's value was set equal to 1 during the derivation. More advanced derivations will always include it.
As an example, suppose an inspection technique for finding cracks in a high strength steel landing gear has a resolution of 0.1 inches. What tensile stress level will the landing gear be able to support without breaking? For this type of steel we can expect Gc = 300 lbs/in., and if E = 30x10^6 psi, then
S = (EGc/pi*a)^0.5
S = [(30x10^6 psi)(300 lbs/in.)/pi*(0.1 in.)]^0.5
S = 1.7x10^5 psi
The landing gear should be able to support a stress of 170,000 psi. What happens if a crack is detected in a used landing gear component that is 1.0 inches in length? Performing the same calculation, we find that S = 54,000 psi. As this example demonstrates, a crack of significant length can dramatically reduce the load carrying capacity of a critical component. 
Back to Metal and Metallurgy engineering FAQ Index
Back to Metal and Metallurgy engineering Forum 

Resources
Though it began in rapid prototyping, 3D printing has begun to proliferate throughout the manufacturing sector. Download Now
Speed and accuracy of response is often the difference in winning new business or losing it. Download Now
The future of service has never looked so promising, but along with the potential waiting to be unlocked, one big question looms... Download Now
When it comes to overcoming challenges and managing complexity, most companies look to their enterprise software. Download Now

