Smart questions
Smart answers
Smart people
INTELLIGENT WORK FORUMS
FOR ENGINEERING PROFESSIONALS

Member Login




Remember Me
Forgot Password?
Join Us!

Come Join Us!

Are you an
Engineering professional?
Join Eng-Tips now!
  • Talk With Other Members
  • Be Notified Of Responses
    To Your Posts
  • Keyword Search
  • One-Click Access To Your
    Favorite Forums
  • Automated Signatures
    On Your Posts
  • Best Of All, It's Free!

Join Eng-Tips
*Eng-Tips's functionality depends on members receiving e-mail. By joining you are opting in to receive e-mail.

Donate Today!

Do you enjoy these
technical forums?
Donate Today! Click Here

Posting Guidelines

Promoting, selling, recruiting, coursework and thesis posting is forbidden.
Jobs from Indeed

Link To This Forum!

Partner Button
Add Stickiness To Your Site By Linking To This Professionally Managed Technical Forum.
Just copy and paste the
code below into your site.

vorwald (Aerospace)
23 Jun 03 11:05
Question: What is the formula for calculating combined stress at a point in beam element NASTRAN?  

Below is my hand calculation of the combined stress, and it is quite a bit different from the calculation from NASTRAN.  I am modeling an angled beam with force in the axial direction.  My input NASTRAN deck is listed below.  The calculated forces on element one are

Moment Plane 1: -21.239
Moment Plane 2:  21.239
Axial Force:     100

The areas and inertias (from FEMAP) are:

SHAPE    Angle (L) Section
Height    0.9    Width    0.9    Thickness    0.08    
Area    0.1376    
ShearAr 1, K1    0.42814    
Shear Ar 2, K2    0.42814        
I1    0.010665    
I2    0.010665    
I12    6.33E-03    
J    2.90E-04

The distances relative to the shear center are

    Y    Z
Neutral Axis    -0.21239    0.21239
Pt 1    0.042146    -4.22E-02
Pt 2    0.042146    0.85785
Pt 3    -0.85785    0.037854
Pt 4    -0.85785    -4.22E-02

My calculation of combined stress is

Axial Stress = Axial Force / Area
Bending Stress = Bending Moment * L / I
Comb Stress = Sum of Axial and Bending Stresses

Axial Stress Calculation

            Axial
Point    Force    Area    Stress
1    100    0.1376    727
2    100    0.1376    727
3    100    0.1376    727
4    100    0.1376    727

Bending Momentent Stress Calculations

                        Bending 1
Point    M1    z            I1    Stress
1    -21    2.55E-01    0.010665    -507
2    -21    -6.45E-01    0.010665    1,285
3    -21    1.75E-01    0.010665    -348
4    -21    2.55E-01    0.010665    -507


                        Bending 2
Point    M2    y            I2    Stress
1    21    -2.55E-01    0.010665    -507
2    21    -2.55E-01    0.010665    -507
3    21    6.45E-01    0.010665    1,285
4    21    6.45E-01    0.010665    1,285

Combined Stress Calculation

    My Comb    NASTRAN Comb
Point    Stress     Stress
1    -287       3223
2    1,505     -1190
3    1,665     -1582
4    1,505     -1190

The NASTRAN deck is below

ID C:\Docum,FEMAP
SOL SUPERELEMENT STATICS
TIME 10000
CEND
MAXLINES=999999999
  ECHO = NONE
  DISPLACEMENT = ALL
  OLOAD = ALL
  SPCFORCE = ALL
  FORCE(CORNER) = ALL
  STRESS(CORNER) = ALL
  SPC  = 1
MAXLINES=999999999
SUBCASE 1
  LOAD = 1
MAXLINES=999999999
BEGIN BULK
$ ***************************************************************************
$   Written by : FEMAP
$   Version    : 8.10
$   Translator : CSA/NASTRAN
$   From Model : C:\Documents and Settings\VorwaldJG\My Documents\h53\mw_060903\ramp 061703\test_beam_angle.MOD
$   Date       : Thu Jun 19 09:26:33 2003
$ ***************************************************************************
$
PARAM,POST,-1
PARAM,AUTOSPC,YES
PARAM,GRDPNT,0
CORD2C         1       0      0.      0.      0.      0.      0.      1.+FEMAPC1
+FEMAPC1      1.      0.      1.
CORD2S         2       0      0.      0.      0.      0.      0.      1.+FEMAPC2
+FEMAPC2      1.      0.      1.
$ FEMAP Load Set 1 : Fx
FORCE          1      11       0      1.    100.      0.      0.
$ FEMAP Load Set 2 : My
MOMENT         2      11       0      1.      0.    100.      0.
$ FEMAP Load Set 3 : Fz
FORCE          3      11       0      1.      0.      0.    100.
$ FEMAP Constraint Set 1 : Fixed End
SPC            1       1  123456      0.
$ FEMAP Property 5012 : Blkhd6UpperCap1
PBEAM       5012  123456  0.13760.0106650.0106656.333E-32.903E-4      0.+PR  3V8
+PR  3V80.042146-4.22E-20.042146 0.85785-0.857850.037854-0.85785-4.22E-2+PA  3V8
+PA  3V8    YESA      1.                                                +PC  3V8
+PC  3V8 0.42814 0.42814                                                +PD  3V8
+PD  3V8                                -0.21239 0.21239-0.21239 0.21239        
$ FEMAP Material 123456 : 7075-T6 Plate .04-.125
MAT1      123456 1.03E+7            0.33      0.      0.      0.        +MT 2N9C
+MT 2N9C  78000.  69000.  47000.
GRID           1       0      0.      0.      0.       0        
GRID           2       0      1.      0.      0.       0        
GRID           3       0      2.      0.      0.       0        
GRID           4       0      3.      0.      0.       0        
GRID           5       0      4.      0.      0.       0        
GRID           6       0      5.      0.      0.       0        
GRID           7       0      6.      0.      0.       0        
GRID           8       0      7.      0.      0.       0        
GRID           9       0      8.      0.      0.       0        
GRID          10       0      9.      0.      0.       0        
GRID          11       0     10.      0.      0.       0        
CBEAM          1    5012       1       2      0.      1.      0.
CBEAM          2    5012       2       3      0.      1.      0.
CBEAM          3    5012       3       4      0.      1.      0.
CBEAM          4    5012       4       5      0.      1.      0.
CBEAM          5    5012       5       6      0.      1.      0.
CBEAM          6    5012       6       7      0.      1.      0.
CBEAM          7    5012       7       8      0.      1.      0.
CBEAM          8    5012       8       9      0.      1.      0.
CBEAM          9    5012       9      10      0.      1.      0.
CBEAM         10    5012      10      11      0.      1.      0.
ENDDATA
vonlueke (Structural)
10 Nov 05 11:00
vorwald:  There are multiple ways to work this out; here's one way. From the given data, it can be seen that, from vector addition, you are applying a moment of M = -sqrt(21.239^2 + 21.239^2) = -30.0365 about the weak principal axis. It can also be figured out that the minor principal moment of inertia is I = 0.004332047. And the corresponding extreme fiber distance is c = -0.3599667. So the maximum normal stress on the cross section is sigma = M*c/I + P/A = 2495.85 + 726.74 = 3222.6, occurring at point 1. Similarly, the fiber distance at point 3 is +0.3329980; substituting this for c in the above formula gives sigma = -1582.1. Likewise, the fiber distance at point 2 (and 4) is +0.2764294, giving sigma = -1189.9. Therefore, all four stress values labeled "Nastran Comb Stress" are exactly correct; all four values labeled "My Comb Stress" are incorrect.

Reply To This Thread

Posting in the Eng-Tips forums is a member-only feature.

Click Here to join Eng-Tips and talk with other members!

Close Box

Join Eng-Tips® Today!

Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.

Here's Why Members Love Eng-Tips Forums:

Register now while it's still free!

Already a member? Close this window and log in.

Join Us             Close