×
INTELLIGENT WORK FORUMS
FOR ENGINEERING PROFESSIONALS

Are you an
Engineering professional?
Join Eng-Tips Forums!
• Talk With Other Members
• Be Notified Of Responses
• Keyword Search
Favorite Forums
• Automated Signatures
• Best Of All, It's Free!

*Eng-Tips's functionality depends on members receiving e-mail. By joining you are opting in to receive e-mail.

#### Posting Guidelines

Promoting, selling, recruiting, coursework and thesis posting is forbidden.

# Electromagnet core shape vs field strength/shape

## Electromagnet core shape vs field strength/shape

### RE: Electromagnet core shape vs field strength/shape

What attributes of core shape are you interested in?
What is the purpose of this device (inductor or electromagnet?)

#### Quote:

Flat edge VS sharp tip
Can you explain what you mean by that? Does it have any relation to attached figure?

=====================================
(2B)+(2B)'  ?

### RE: Electromagnet core shape vs field strength/shape

(OP)
@Electricpete: Thanks for the response!

I'm under the understanding that magnetic fields concentrate around sharp edges. If that's the case, it makes me wonder if a core that came to a sharp point at both ends would be stronger than one that was flat on each side. If not, it must have some effect still (in which case, I'm still curious about).. But I don't know enough about electricity and magnetism to decipher the all the variables.

This is for an electromagnet.

The "flat edge VS sharp tip" thing is depicted in my attachment. I drew up 3 different models to clarify what I meant (the first is an example of the common "flat" core edge electromagnet, and the other two are variations of my concept regarding a "sharp tip" core)

### RE: Electromagnet core shape vs field strength/shape

Thanks. I didn't scroll down on first look. Now I see there are a series of sketches.

A pointed tip might possible create higher local flux density at the tip, but who cares it doesnt' buy you any holding power.

If you are looking for holding power, a flat surface of your will core will hold on to an attached flat steel piece much better than an irregular/pointed surface.

Also something to consider, U-shaped core such that the thing you're picking up bridges accross the U will tend to create much higher flux density (up to the point of saturation) and holding power than a geometry which does not complete the flux path.

=====================================
(2B)+(2B)'  ?

### RE: Electromagnet core shape vs field strength/shape

(OP)
Forsure, I understand what you're saying about holding power. In my head, when I 1st questioned this, I wasn't so much thinking in terms of picking up/holding anything with the electromagnet, but more so magnetizing other objects that would pick things up, and manipulating ferrofluid. I probably should have mentioned that. My bad... I'm brand new to this whole forum.

Ok... So (just to really drive this home for me) IF instead of an electromagnet I was going for an inductor, how do you think the higher local flux density created by at the pointed tip would be more effective than a flat edge core?

--..--
.||||.
--::--
|./\.|
:.\/.:

### RE: Electromagnet core shape vs field strength/shape

You can tapper the pole pieces to get higher flux density (same total field squeezed into a smaller are) only to the saturation limit of the material.
So I was building an electromagnet to reach ~2T over a 2" diameter, so we start with iron core wound to reach 1T on 4" and taper it to reach near saturation, then add tapered Permandure pole pieces to reach 2" and higher field density.  Local filed density is higher but NA is the same.

= = = = = = = = = = = = = = = = = = = =
Plymouth Tube

### RE: Electromagnet core shape vs field strength/shape

For long travel solenoids, conical pole faces have some advantage.  However, a bigger factor is moving the working gap inside the coil winding.  Ideally, the gap should be in the center of the winding but anyplace inside is better than outside.  If you really want to experiment with the effects of geometry, get a 2D magnetic FEA program.  There are commercial packages but you can download FEMM for free.

The Help for this program was created in Windows Help format, which depends on a feature that isn't included in this version of Windows.

#### Red Flag This Post

Please let us know here why this post is inappropriate. Reasons such as off-topic, duplicates, flames, illegal, vulgar, or students posting their homework.

#### Red Flag Submitted

Thank you for helping keep Eng-Tips Forums free from inappropriate posts.
The Eng-Tips staff will check this out and take appropriate action.

Close Box

# Join Eng-Tips® Today!

Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.

Here's Why Members Love Eng-Tips Forums:

• Talk To Other Members
• Notification Of Responses To Questions
• Favorite Forums One Click Access
• Keyword Search Of All Posts, And More...

Register now while it's still free!