Here is another explanation:
Lift (or head pressure) is the difference between condenser refrigerant pressure and evaporator refrigerant pressure. Using defined pressure-temperature relationships, lift can also be measured with the LCHWT and the leaving condenser-water temperature. Further, when the LCHWT and condenser-water flow are constant, the ECWT can be used as a metric for lift. Because most condenser water systems are designed for constant flow, ECWT is the most common metric for lift. In comfort-cooling applications, lower ECWT indicates lower lift, which lowers the compressor work . The relationship can be summarized as: lower ECWT = lower lift = lower compressor work = lower energy usage. In comfort-cooling applications, ambient weather conditions often allow facility owners to take advantage of ECWT as low as 50? (at AHRI conditions). The capability to use lower ECWT significantly improves chiller efficiency. In fact, greater chiller efficiency can be achieved by lowering lift than by lowering load. The efficiency improvements due to lower lift can be realized in both single-chiller and multiple-chiller installations.