Smart questions
Smart answers
Smart people
Join Eng-Tips Forums
INTELLIGENT WORK FORUMS
FOR ENGINEERING PROFESSIONALS

Member Login




Remember Me
Forgot Password?
Join Us!

Come Join Us!

Are you an
Engineering professional?
Join Eng-Tips now!
  • Talk With Other Members
  • Be Notified Of Responses
    To Your Posts
  • Keyword Search
  • One-Click Access To Your
    Favorite Forums
  • Automated Signatures
    On Your Posts
  • Best Of All, It's Free!

Join Eng-Tips
*Eng-Tips's functionality depends on members receiving e-mail. By joining you are opting in to receive e-mail.

Posting Guidelines

Promoting, selling, recruiting, coursework and thesis posting is forbidden.
Jobs from Indeed

Link To This Forum!

Partner Button
Add Stickiness To Your Site By Linking To This Professionally Managed Technical Forum.
Just copy and paste the
code below into your site.

Material Spec for High Partial Pres. H2S Gas PipelineHelpful Member!(6) 

mcmidkiff (Petroleum) (OP)
21 Apr 05 17:05
What material specification should be used for gas piplines with high partial pressure H2S (P(H2S) = 4 psig)?  I am under the impression that MR0175 does not address HIC, SWC, and others and that I should spec conformance with ISO 15156-2.  The pipe vendors respond that MR0175 is equivalent to ISO 15156-2.  I'm confused.  Should I require Full Body Normalized?  Do I need to specify a max on manganese and sulfur content?  Also, should I spec Gr B or is X-42 okay?  I'm concerned that the actual yield of X-42 may be as much as X-60.  Is there a problem with full body normalized ERW vs. seamless?
mcmidkiff (Petroleum) (OP)
21 Apr 05 17:39
I failed to state that the gas stream is dehydrated with about 3 mol% CO2 and 4000 ppm H2S at ~80 deg F.  Eventually the pressure may drop from 1000 psig to 350 psig without dehydration.
Helpful Member!  SJones (Petroleum)
22 Apr 05 1:01
Try and get hold of ISO 3183-3 for linepipe and look at the H2S containing service requirements in that standard.  If those requirements are met then ISO 15156-2, NACE MR0175 will be met and surpassed.  

Be careful with HFW pipe in H2S service - it can be done but select the pipe mills after thorough investigation and demand the weld SSC test that is optional in ISO 3183-3.  Better still, get an experienced E&P Materials & Corrosion Engineer on board to help you as you will certainly need to assess the corrosion implications of running the line without dehydration.

Steve Jones
Materials & Corrosion Engineer
http://www.pdo.co.om/pdo/

SJones (Petroleum)
22 Apr 05 3:13
I forgot to mention that you may wish to also look at ISO 15590 Parts 1, 2, and 3 for induction bends, fittings, and flanges respectively.

Steve Jones
Materials & Corrosion Engineer
http://www.pdo.co.om/pdo/

Helpful Member!  PVRV (Mechanical)
26 Apr 05 9:35
1.  NACE-MR0175 has been superseded by MR130.
    Refer to this thread: Thread338-82286

2.  NACE-MR0175 does not address HIC, NACE-TM0284 proposes
    testing methods for HIC without any guidance on  
    acceptance criterion.

3.  Refer to this thread: Thread286-83592 for proposed  
    specifications.

4.  Seamless pipelines although restricted in diameter,
    are idle for sour service.

5.  I would be reluctant to use high strenght materials in
    sour service; but then again depends on design pressure
    requirements.  

6.  Alot of operators consider SAW (Spiral) and ERW
    pipelines unsatisfactory for sour service.  However,
    recent development in HF-ERW has proven to be adequate.


Please post further clarifications after you have reviewed the above.


Cheers


PAN (Mechanical)
27 Apr 05 6:08
PVRV,

This should be MR0103 instead of MR0130.
mcmidkiff (Petroleum) (OP)
27 Apr 05 7:39
I've encountered a wide range of comfort level for 1000 psig, 4 psi H2S partial pressure pipe; from seamless to X-42/52 PSL1.  The one person I've spoken with that experienced an SCC failure indicated that the failure occurred on a pre-1972 vintage LFW ERW line and that the SCC was confined to the weld seam.  Is there evidence against using X-42 PLS2 full body normalized pipe?
PVRV (Mechanical)
27 Apr 05 10:28

a.  Thank you PAN, for the correction.

b.  An increase in material strenght (yield/tensile) is
    achieved in carbon steel through an increase in Carbon
    or Manganese content.  Both of which are restricted in
    sour service.  Elements that cause segragation such as
    Sulphur and Phosphourus are minimized and considered
    inpurities. (non-homogenious material properties) Plus,
    suplhur promotes cracking.  

c.  Problem with high strenght carbon steel is the
    susceptability to SSC.  

d.  Normalizing decrease secondary stresses in the
    material as a result of fabrication this is quite
    significant (upto 2/3 of the yield) even with perfect
    normalizing (about 10% secondary stresses is retained)

e.  Problem with H2S is the hydrogen which gets generated  
    as a result of a corrosion reaction in turn difusses
    through the material wall and causes embrittelement.
    
f.  With time, the material can no longer absorb the energy
    and starts to crack. (losses toughness)  

g.  Such a fault condition leads to failure once, the
    secondary stresses (increasing due to hydrogen
    embrittlement) plus the primary stresses (operating
    pressure) exceed the material minimum yield strenght.

Basically, omitting heat treatment of carbon steel materials in sour service substantially reduces service life; and vice is true.

PSL2 places maximum limits on the material elements; this places emphysis on the material quality.  
Helpful Member!  SJones (Petroleum)
28 Apr 05 2:26
Are you required by law or contract to use API 5L?  Much like my view of NACE MRO175: to me, API 5L is history. No doubt a very useful specification in its day but the world has caught up with API, and ISO 3183-3 incorporates a lot of the extras that most purchasers usually impose on top of API 5L.

I'm working on a project with many BARS partial pressure H2S and have no problem with X65 HFW pipe provided it comes from certain pipe mills who have their act together.  I had no hesitation in allowing DN400 X-65 HFW pipe for H2S containing service to go in 300 m water depth offshore Norway. Audit the pipe mill, qualify the pipe manufacturing (ensuring that strip edges are prepared by milling - do not allow rotary shearing) and in that qualification include SSC testing of the weld seam.  Yes, there were horror stories with the old ERW pipe but shake off the past and move on.  Incidentally, the installation contractor will also prefer HFW pipe over seamless because of better dimensional control.  As to full body normalising: by all means specify it but a seam normalising treatment in a good mill is just as effective and will make the pipe a little cheaper.

MR0103 is aimed at refinery equipment whose conditions will, in general be very different from an upstream pipeline.

Steve Jones
Materials & Corrosion Engineer
http://www.pdo.co.om/pdo/

PVRV (Mechanical)
29 Apr 05 17:17
mcmidkiff: take a look at NACE-MR0175/ISO 15156; I stand corrected about MR0103 scope.

Sjones: I wonder how many manufacturers are able to provide HFI > 400 Hz, the time impact associated with weld DT,  flattening & microstructure examination, re-coiling tests,etc and how many manufacturers are willing to provide weld yield strenght values.

Installation contractors prefer plate tolerances as a pose seamless pipe tolerance; regardless of the welding process; however how feasible is it to weld X65 Carbon Steel manually :)      

As for refineries, it is feasible to utilize alloyed materials in view of the relatively short distances involved or when the stream is dehydrated; such options are not readily avaliable for E&P operators.  

On a different note, what type of flowline material does pdo utilize; ERW or GRE ?  and what type of marine pipelines?

Cheers
  
SJones (Petroleum)
30 Apr 05 0:22
PV,

The ISO 3183-3 requirement for HFW pipe is a minimum 150 kHz welding current frequency.  Of the 2 or 3 pipe mills that I would be happy taking sour service HFW from (based on detailed appraisals), none of them use less than 250 kHz if I recall correctly. The time impact for the testing is not an issue (except for SSC testing but that would be an issue for all at 30 days duration) as the testing is offline whilst production continues.

Another driver to use HFW pipe over seamless is cost.  At least it used to be 4 years ago when I was last seriously involved with pipeline costs before steel costs skyrocketed.  HFW, being a more efficient production method, is generally cheaper than seamless.

It is very feasible to weld X65 manually.  It is down to a routine basis here in the Middle East.

PDO's common flowline materials are seamless carbon steel and GRP.  There has been a small dalliance with 13Cr and duplex stainless steel.  PDO does not have any offshore operations.

Steve Jones
Materials & Corrosion Engineer
http://www.pdo.co.om/pdo/

PVRV (Mechanical)
30 Apr 05 8:51
Dear Mr. Jones,

Several GCC operators require that only HFIW be utlized moreoever, > 400 Hz is mandated.  

There is no doubt that ERW is cheaper and still inferior; by virtue of your current operation utlizing seamless pipes for flowlines.  

As for welding X65; I beg to differ.  It is difficult to weld steel with CE above 0.42 moreoever, the welding consumables are in the order of 80XX or 100XX.  Slag inclusions was a prominent and substantial problem even in welding X60 joints.   

As for GRP it is much cheaper that GRE; however GRP is inferior since permeability is a problem due to the absence of an internal liner.

ERW is banned in sour service and offshore application in our operation.  Moreoever, spirally welded pipes are banned in our refineries.  Both are utlized as protective sleeves or in utlities service.

Considering the recent developments in ERW; I would entertain its use in flowlines only and not gas or main transit lines else export lines. (onshore or otherwise)

I realise that either your streams are in the order of % of H2S or the system pressure is very high.  Wonder, what the water cut is? since dry H2S service is one matter where as wet H2S is something totally different.


Cheers


SJones (Petroleum)
1 May 05 0:01
PV,

Your company seems to be very set in its ways and that, I would say, is their loss. As to whether it is HFW or HFIW - to me, and to ISO, it is HFW - high frequency welded.  Whether the welding is achived by induction or direct contact makes no difference in my view.  I take it that you mean greater than 400 KILO Hertz frequency.  Another urban myth that the GCC operators are serving to perpetuate because they lack access to contemporary experience and research results.  Our operation uses seamless pipe for flowlines because we typically don't go above DN150 that is generally below the manufacturing range of acceptable HFW pipe mills.  As to its inferiority, I fail to see the logic in that argument when we have many hundreds of kilometres of HFW pipeline installed and operating satisfactorily.

I agree that it may be difficult to weld pipe with a CEV higher than 0.42 but as we buy X65 with a maximum CEV of 0.39 the problem is diminished somewhat.  Perhaps your company should review its purchasing specifications.

GRP = Glass Reinforced Plastic of which GRE, Glass Reinforced Epoxy, is a subset. The GRP that is in use here is all epoxy based.

The current project is high pressure and high H2S.  The principal worry in wet H2S would be metal loss corrosion as the pipe specification will have addressed other degradation modes.  Even if it is "dry" service, one must always cater for upset wet conditions and, fortunately, the only difference in pipe requirements will be the amount of corrosion allowance.

Regarding spiral welded pipe, I wonder how many thousands of kilometres of the stuff are in use in European gas transmission service.

It is unfortunate that your company appears to suffer some deep rooted prejudices regarding linepipe applications and struggles with welding.  Good luck with your attempts to change things.

Steve Jones
Materials & Corrosion Engineer
http://www.pdo.co.om/pdo/

PVRV (Mechanical)
1 May 05 1:09

Your apparent lack of appreciation towards pertinent welding processes involved in ERW fabrication is regrettable.   I fail to see why you advocate the utilization of ERW pipelines and yet the Company you work for utilizes seamless pipelines and GRP; in addition to zero offshore operations; dispute your own cost and construction reservations.   Quite a problem when your own technical judgement is not entertained by your current employer.  

Moreover, the dismissal of API 5L is reckless to say the least; apparently there is no appreciation of the API monogram in manufacturer qualification.   As for welding consumables and welding progression apparently there is a lack of practical experience in your case.

Furthermore, it is disappointing to see you argue against the norm; by virtue of the inconsistency in the discussion.  It is suggested that upstream operators should not be considered with NACE-MR0103 and yet you emphasis wet H2S service.

In North America, SAW (Spirally Welded Pipes) are used for utility services.  Then again, ignorance can be a bliss.  
PVRV (Mechanical)
1 May 05 1:16

Sjones,

If you are eager to learn more, there is a NACE paper (TR) regarding banning the use of ERW pipelines in sour service.  

SJones (Petroleum)
1 May 05 5:18
PV,

Many thanks for the offer.  I'm always eager to learn.  Grateful if you would quote the specific NACE reference to which you refer.  In the meantime, if your company is a member of TWI, see if you can access TWI report 12953/9/02 The Use Of ERW/HFI Pipe For Sour Service.

I'll ignore the other disparagements.

Cheers.

Steve Jones
Materials & Corrosion Engineer
http://www.pdo.co.om/pdo/

Helpful Member!  rorschach (Petroleum)
4 May 05 11:17
Mr. Jones, I'm concerend by your recommendation that full normalizing is really not required and that normalizing the HAZ is all that is needed. Have you never seen ringworm corrosion? normalizing just that HAZ effectively just moves the HAZ. you still get a stress gradient that will be a corrosion catalyst. Your lack of concern for this scares me.
SJones (Petroleum)
5 May 05 2:37
Where does the "stress gradient" come from.  Surely, ringworm corrosion is down to microstructural differences caused by improper heat treatment.  Good pipe seam heat treatment leaves the weld zone and the pipe body material with a reasonably identical microstructure.  If the pipe mill is in control of the process, it is perfectly satisfactory to have seam normalising only.   HIC and SSC testing of the weld zone will identify any problems for H2S containing service.  So, tell us, have you seen ringworm corrosion in HFW pipe or are you extrapolating from downhole tubulars?  On the same basis, would you also advocate full body normalising of SAW pipe because of the HAZ left in the seam?

Steve Jones
Materials & Corrosion Engineer
http://www.pdo.co.om/pdo/

rorschach (Petroleum)
6 May 05 13:43
I'm extrapolating from downhole tubulars of course. But yes, I think that any welded part that is subject to H2S should be fully normalized to prevent stress gradients. HAZ's by thier very nature are a site of induced stress. Since H2S attacks through SSC which is a form of hydrogen embrittlement, stressed areas are more susceptible to it. I have seen a number of welds that failed in the HAZ through similar mechanisms. That is the whole point of normalizing to begin with.

For those who may ne know what ringworm corrosion is:

Downhole tubulars are upset on the ends to give more meat for the threaded area. Some manufacturers, to save money and time, will induction normalize just the upset area. others will normalize the entire tube. When you normalize just the ends, you have a HAZ just beyond the induction coil end. This has historically been characterized by a near perfect ring of corrosion right at the HAZ.

I cannot see how it would be possible to normalize just a weld seam without creating a  new HAZ on either side of the heated area.
SJones (Petroleum)
7 May 05 4:59
What type of welds have you "seen fail in the HAZ"?  What about if residual stresses in HFW pipe are actually compressive (see Pargeter, R.J., Proc Conf Pipeline Reliability, Calgary, 2-5 June 1992) how will that impact SSC performance?  Is it reasonable to extrapolate performance of downhole tubular materials to that of modern carbon steel strip used for HFW pipe?  Is the metallurgy and response to the heat treatment processes the same? Don't forget that HFW pipe seam heat treatment may involve a water quench and that multiple treatments can be given in the production line.

Steve Jones
Materials & Corrosion Engineer
http://www.pdo.co.om/pdo/

Helpful Member!(2)  JMcHaney (Materials)
12 May 05 11:11

The publication offered by Pipeline Research Council International at the link below (followed by copy of the abstract, etc.)provides a useful discussion of specification of line pipe, fittings, and flanges for sour-service applications.

The report discusses and provides recommendations for specifying line pipe, fittings, and flanges resistant to the four major hydrogen damage mechanisms for piping components including blistering, hydrogen-induced cracking, stress-oriented hydrogen-induced cracking, and sulfide-stress cracking.

Recommendations in this publication do not agree with some of the responses to your posting.

The publication should be available at no cost to employees of organizations that are members of PRCI.

Although I was a primary co-author of the publication, it was prepared under contract to PRCI, who owns all rights to reproduction and sale of the publication. Consequently, sale of a copy of the publication does not benefit me or the other co-authors.

With regards,
Jim McHaney


http://www.prci.com/publications/L51789.htm

Recommended Practice for Sour-Service Piping Components

Category: Materials  
Project Number:  PR-252-9605
Catalog Number: L51789
eBook Version Available:  Yes, L51789e  
Publication Date: January 01, 1997
Author(s): McHaney, J.; Bruno, T.; Buehler, W.
Research Agency: Metallurgical Consultants, Inc.
Pages: 245
Binding Type: GBC
Software Included: No  
System Requirements: N/A

 Click here to view Table of Contents

Abstract:

Need: Existing industry standards do not adequately address all the issues related to construction and operation of pipelines to transport fluids containing both liquid water and hydrogen sulfide (H2 S), commonly called wet sour service or sour-service applications. The lack of industry standardization for sour service is significant because some commercially available line pipe, fittings and flanges are susceptible to failure when exposed to sour service. The failures that can occur are due to damage of carbon steel as a result of the corrosion reaction between H2 S and carbon steel. Operators of sour-service systems have developed company-specific or project-specific practices and specifications for design, construction, operation and maintenance of those systems. One result of company-specific and/or project-specific specifications is a lack of standardization in sour-service line pipe, fittings and flanges. The lack of standardization in sour-service piping components results in additional costs for initial construction, modification and maintenance of sour-service systems.

Benefit: The objective of this project for the Line Pipe Research Supervisory Committee was to develop recommended practices that a knowledgeable user can apply to the specification of line pipe, fittings and flanges for use in construction of pipelines and piping systems to transport fluids containing both liquid water and H2S. Development of recommended practices for construction, modification and maintenance of sour-service systems was outside the scope of this project. This report includes a discussion of the current understanding of broad issues relating to sour-service pipelines. This discussion is a summary of the more important issues rather than a critical review of all related literature on the subject of sour service. This report includes recommended specification criteria for line pipe, fittings and flanges in expository format. These criteria provide guidance for preparation of the specifications in commercial language for sour-service line pipe, fittings and flanges. These criteria should allow users to modify existing specifications for ordinary-service piping components to specifications suitable for sour service. This project included a survey of LPRSC members and producers of line pipe, fittings and flanges recommended by committee members. The goal of these surveys was to collect current information about the range of member practices and products readily available from surveyed producers.

Result: Producers of line pipe, fittings and flanges indicate a clear preference for greater standardization of sour-service piping components. There is significant economic incentive for members of the PRCI to pursue greater standardization of sour-service piping components. This standardization of sour-service piping components could benefit both PRCl members and producers of piping components. A sizable block of users must adopt uniform specification requirements when purchasing sour-service piping components for standardization to occur. Implementation of recommendations in this report could result in uniform specification requirements for sour-service piping components. Industry technical committees would likely incorporate specification requirements that become generally accepted as de facto standards for sour-service piping components.

Price: $495.00

Reply To This Thread

Posting in the Eng-Tips forums is a member-only feature.

Click Here to join Eng-Tips and talk with other members!

Back To Forum

Close Box

Join Eng-Tips® Today!

Join your peers on the Internet's largest technical engineering professional community.
It's easy to join and it's free.

Here's Why Members Love Eng-Tips Forums:

Register now while it's still free!

Already a member? Close this window and log in.

Join Us             Close