INTELLIGENT WORK FORUMS FOR ENGINEERING PROFESSIONALS
Come Join Us!
Are you an Engineering professional? Join EngTips Forums!
 Talk With Other Members
 Be Notified Of Responses
To Your Posts
 Keyword Search
 OneClick Access To Your
Favorite Forums
 Automated Signatures
On Your Posts
 Best Of All, It's Free!
*EngTips's functionality depends on members receiving email. By joining you are opting in to receive email.
Posting Guidelines
Promoting, selling, recruiting, coursework and thesis posting is forbidden.

Electric power & transmission & distribution FAQ Share
Electric Power Engineering
Very Brief Overview of Symmetrical Components (positive, negative, & zero sequence)
Posted: 23 Jul 02

Reference Protective Relaying Principles and Applications by J. Lewis Blackburn. Considering a threephase system, symmetrical components (positive sequence, negative sequence, and zero sequence) allow one to analyze power system operation during unbalanced conditions such as those caused by faults between phases and/or ground, open phases, unbalanced impedances, and so on. The positive sequence set consists of the balanced threephase currents and linetoneutral voltages supplied by the system generator. They are always equal in magnitude and phase displaced by 120 degrees rotating at the system frequency with a phase sequence of normally a, b, c. The sequence currents or sequence voltages always exist in three's, never alone or in pairs. The negative sequence set is also balanced with three equal magnitude quantities at 120 degrees apart but with the phase rotation or sequence reversed, or a, c, b. (If the positive sequence is a, c, b as in some power systems, then negative sequence will be a, b, c.) For the negative sequence set, again the sequence currents or sequence voltages always exist in three's, never alone or in pairs. The members of the zerosequence set of rotating phasors are always equal in magnitude and always in phase. Once again, if zero sequence currents or zero sequence voltages exist, they must exist in all three phases, never alone or in one phase. In transformers, lines, etc., the phase sequence of the current does not change the impedance encountered, so positive sequence impedance equals negative sequence impedance; X1 = X2. System generators do not generate negative sequence currents, but negative sequence can flow in their windings. For rotating machines X2 = 1/2(X"d + X"q). Except for calculating faults very near machine terminals, can assume X"d=X"q, so X2 = X"d. Zero sequence for transformers is equal to the positive & negative sequence and is the transformer leakage impedance, except in coretype transformers where Xo = .85 to .9 times X1. For estimating open lines Xo = 3 or 3.5 times X1 is commonly used. Zero sequence impedance of generators is low and variable depending on winding design. 
Back to Electric power & transmission & distribution FAQ Index
Back to Electric power & transmission & distribution Forum 

Resources
Product engineers and tooling manufacturers have much to gain from 3D printing: By generating lowcost physical prototypes early in the design process, they can check form, fit and function, gauge customer response and compare design iterations without commitment. Download Now
Keeping up with the demand for better, faster design flow performance while preserving the original layout hierarchy of a design can be very challenging during design verification. Download Now
Top performing companies donâ€™t just integrate PLM with their enterprise systems â€“ they also integrate PLM with their engineering tools and CAD systems. Download Now
Radial wheels can match production floor demands where debris or contaminates are present Download Now

